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1 Introduction

At CERN’s Large Hadron Collider (LHC), it is widely anticipated that signals of new

physics, for example supersymmetry, may manifest themselves as large excesses of data

compared to expected QCD and electroweak backgrounds at high momentum scales [1–7].

The estimation of these backgrounds will be one of the elements in ascertaining the presence

of any new physics from such signals. Consequently, considerable effort is being invested

across the particle physics community in the development of methods to understand and

predict backgrounds (some of the issues involved are described nicely in ref. [8]).

– 1 –



J
H
E
P
0
9
(
2
0
1
0
)
0
8
4

10-1

 1 

10 

102

103

104

 250  500  750  1000

dσ
/d

V
 [f

b 
/ 1

00
 G

eV
]

V = pt,Z [GeV]

pp, 14 TeV
anti-kt, R=0.7
pt,j1 > 200 GeV, Z → e+e-

LO
NLO

 250  500  750  1000
V = pt,j1 [GeV]

LO
NLO

 250  500  750  1000
V = HT,jets [GeV]

MCFM 5.7, CTEQ6M

LO
NLO

Figure 1. The LO and NLO distributions obtained with MCFM 5.7 [19, 20] for three observables

in Z+jet production: the Z transverse momentum (left), the pt of the hardest jet (middle), and the

scalar sum of the transverse momenta of all the jets, HT,jets (right). The bands correspond to the

uncertainty from a simultaneous variation of µR = µF by a factor of two either side of a default

µ =
√
p2

t,j1 +m2
Z. The jet algorithm is anti-kt [21] with R = 0.7 and only events whose hardest jet

passes a cut pt > 200 GeV are accepted. The cross sections include the branching ratio Z → e+e−.

For simplicity, in this and other figures, no acceptance cuts have been applied to the electrons or

Z-boson.

Given the QCD methods that are available today, some of the best prospects for

obtaining systematic, accurate predictions of backgrounds involve next-to-leading order

(NLO) QCD calculations. By carrying out a systematic expansion in the strong coupling

and obtaining the first two terms (leading order (LO) and NLO) for a given process, one

often obtains predictions that are accurate to 10−20%. The importance of NLO predictions

in the LHC programme has motivated a large calculational effort destined to extend the

range of processes known at NLO (for reviews, see refs. [9, 10]).

While the majority of NLO calculations show some degree of convergence relative

to the LO results, several groups have commented in recent years on the appearance of

K factors, ratios of NLO to LO results, that grow dramatically towards high transverse

momenta [11–16] (similar behaviour is visible also in [17, 18]). The problem generally

occurs for hadronic observables (jet transverse momenta, etc.) in processes that involve

heavy vector bosons or heavy quarks, at scales far above the boson or quark mass.

Figure 1 illustrates this for the pp → Z+jet process at LHC (14TeV) energies. It

shows the distributions of three observables that are non-zero for configurations involving

a Z-boson and one or more partons: the transverse-momentum of the Z-boson (pt,Z), the

transverse-momentum of the highest-pt jet (pt,j1) and the effective mass (scalar sum of the

transverse momenta) of all jets (HT,jets). At LO, all three distributions are identical. At

NLO, the pt,Z observable is rather typical of a QCD observable: its distribution has a NLO

K-factor of about 1.5, fairly independently of pt,Z, and its scale dependence is reduced with

respect to LO. The pt,j1 distribution is more unusual: at high pt it has aK-factor that grows

noticeably with pt,j1, reaching values of about 4−6, which is anomalously large for a QCD

correction. The HT,jets observable is even more striking, with K-factors approaching 100.
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Figure 2. A) a LO contribution to Z+jet production; B) and C) two contributions that are NLO

corrections to Z+jet observables but whose topology is that of a dijet event with additional radiation

of a soft or collinear Z-boson either from a final-state quark (B) or an initial-state one (C).

Given that figure 1 involves momentum scales where αs ∼ 0.1, one is driven to ask

how it is that such “giant” K-factors can arise. As touched on in [13], and discussed in

more detail in [14, 15] for the pt,j1 case, the answer lies in the appearance of diagrams with

new kinematic topologies at NLO.1 This is illustrated in figure 2: at LO the only event

topology (A) is that of a Z-boson recoiling against a quark or gluon jet. One type of NLO

diagram involves gluon radiation from this basic topology, giving modest corrections to all

our observables. However, there are also NLO diagrams (B,C) whose topology is that of

a dijet event, in which a soft or collinear Z-boson is radiated from outgoing or incoming

legs. These diagrams do not contribute significantly to the pt,Z distribution, because the

Z-boson carries only a moderate fraction of the total pt. However when examining pt,j1,

it is irrelevant whether the Z boson is soft or not. Contributions B and C then lead to

a result that is of order α2
sαew ln2 pt,j1/mZ, where the double logarithm comes from the

integration over soft and collinear divergences for Z emission. The ratio of the NLO to LO

results is therefore O
(

αs ln2 pt,j1/mZ

)

,2 rather than just O(αs), hence the K-factor that

grows large with increasing pt.
3 For the HT,jets observable the enhancement is even bigger

because the dijet topology leads to HT,jets ∼ 2pt,j1 instead of HT,jets = pt,j1 at LO.

While it is reassuring that we can understand the physical origins of the large K-factors

in figure 1, we are still left with doubts as to the accuracy of the NLO Z+jet predictions for

pt,j1 and HT,jets, since they are dominated by the LO result for the Z+2-parton topologies.

One way forward would be to calculate the full NNLO corrections for the Z+jet process.

However, while work is progressing on NNLO calculations of 2 → 2 processes with QCD

final states (see e.g. [24] and references therein), results are not yet available; nor are

they likely to become available any time soon for some of the more complex processes

where giant K-factors have been observed (e.g. some observables in pp → Wbb̄ [13, 17]).

Alternatively one could simply try to avoid observables like pt,j1 and HT,jets in inclusive

event samples. For example, with additional cuts on the vector-boson momentum or a

second jet, refs. [13, 15] showed that the K-factors are significantly reduced. However,

given the many analyses that are foreseen at the LHC, it is likely that at least a few will

1A related discussion in the context of vector-boson plus multijet ensembles appears also in [22].
2This differs from double electroweak (EW) logarithms, which involve terms like αew ln2 pt/mZ , and are

usually much smaller. Examples do exist of “giant” EW effects when tagging flavour [23].
3Part of the enhancement at high pt also comes from the fact that one can have qq → qq scattering that

emits a Z, whereas the qq partonic channel does not contribute at LO.

– 3 –



J
H
E
P
0
9
(
2
0
1
0
)
0
8
4

end up probing regions where giant K-factors are present.

To understand how else one might address the problem of giant K-factors, one can

observe that in our Z + jet example, the bottleneck in obtaining a NNLO prediction is the

inclusion of the two-loop 2 → Z + 1parton contributions and proper cancellation of all

infrared and collinear divergences. Yet the two-loop (and squared one-loop) contribution

will have the topology of diagram A in figure 2 and should not be responsible for the

dominant part of the NNLO correction, which will instead come from diagrams with the

topology of B and C, with either an extra QCD emission or a loop. So if one includes tree-

level 2 → Z+3 and 1-loop 2 → Z+2 diagrams (i.e. Z+2 jets at NLO) and supplements them

with even a crude approximation to the two-loop 2 → Z+1 result, one that suffices merely

to cancel all divergences, then one should have a good approximation to the full NNLO

result (a related observation has been exploited to obtain approximate NNLO results for

high-pt J/ψ production in [25]).

The purpose of this article is to develop a general method for obtaining such rough

estimates of missing loop corrections. Our approach, called LoopSim, will be based on

unitarity. After explaining how it works in section 2, and outlining a secondary “reference-

observable” approach for control purposes, we will test the method by comparing its results

to full NNLO predictions for lepton-pt spectra in Drell-Yan production in section 4, apply

it to our Z+jet observables in section 5 and finally, in section 6, examine whether it can be

of use even in the absence of giant K-factors, specifically for a number of dijet observables.

2 The LoopSim method

The main ingredient of the LoopSim method is a procedure for taking a tree-level event

with n final state particles and supplementing it with a series of events with n−1 particles

(approximate 1-loop events), n − 2 particles (approximate 2-loop events), etc., such that

the sum of the weights of the full set of events is zero. This “unitarity” property will

ensure that all the soft and collinear divergences of the tree-level matrix elements will

cancel against identical divergences in the simulated loop contributions.

An outline of the procedure is given in figure 3. Given a tree-level input event (a),

the first step is to interpret it as a sequence of emissions (as if it had been produced by a

parton shower), so that for example (diagram b) one can view particle 2 as having been

emitted from particle 1, and particle 4 as emitted from the beam. The attribution of an

emission sequence can be performed with the help of a suitable sequential-recombination

jet algorithm and will be most meaningful in the limit that emissions are strongly ordered

in angle and energy. The next stage is to decide which particles reflect the underlying hard

structure of the event. If the event structure at the lowest possible order is that of a 2 → 2

scattering, then one should identify two outgoing “Born” particles. The Born particles

will remain present in all the approximate “loop” events that are generated. They are

represented as thick red lines in diagram (c). Again this step is most meaningful when all

non-Born emissions are soft and collinear.

One then generates a set of simulated “1-loop” events by finding all ways of recombining

one emitted particle with its emitter, diagrams (d,e). Each such “1-loop” event comes with
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Figure 3. Sketch of the LoopSim procedure as applied to a tree-level event (a) with 4 outgoing

particles (numbered) and the beam (horizontal line); diagram (b) shows the attribution of the

emission sequence, (c) the identification of the Born particles (thick red lines), and (d)-(f) the

resulting “looped” diagrams. These diagrams are relevant in approximating next-to-next-to-leading

corrections to a process whose LO contribution has a 2 → 2 structure.

a relative weight of −1 compared to the tree-level diagram. Similarly the set of simulated

“2-loop” events is obtained by finding all ways of recombining two emitted particles with

their emitter(s) (diagram f), each with relative weight +1; and so forth down to events

where only Born particles remain (in figure 3 this is already reached at the two-loop level).

Note that the loop-diagrams drawn in figure 3 are not intended to represent the actual

Feynman diagrams that would be relevant at 1 and 2-loop level. Instead they indicate the

way in which we have approximated the loop divergences, as the unitarising counterparts

of the divergences that appear for each emission in the soft and collinear limits.

Given the above procedure for unitarising tree-level events, we shall see that it is then

straightforward to extend it to event sets that also include exact loop diagrams.

2.1 The tree-level pure glue case

We start by examining the LoopSim procedure in the simple case of purely gluonic tree-

level events. This will suffice to introduce most of the relevant concepts. Section 2.2 will

then discuss some of the additional issues that arise for events with quarks and vector

bosons, while the handling of events sets that include exact loop diagrams will be left to

section 2.3.

It is helpful to introduce some notation: Firstly, b is the number of final-state particles

present in the lowest relevant order (i.e. the number of final-state “Born” particles). For

instance b = 2 if considering higher-order corrections to dijet events, as in figure 3. En

represents a generic event with n final state particles. So the starting event of figure 3 would

be labelled E4. Finally, U b
l will be an operator that acts on an event En and returns all the

events at l loops obtained from En using the LoopSim method. For instance, figure 3d,e

represents the action of U b=2
l=1 on the input E4 event (a).

– 5 –
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The central part of the LoopSim method involves the construction of the operator U b
l

acting on En for all l = 0 . . . n− b (l ≤ n− b because the number of real final state particles

cannot be smaller than that of the lowest order event).

2.1.1 Attribution of structure to events

Recall that the primary function of the LoopSim method is to cancel the divergences

that appear in the soft and collinear limits. In these limits, events can be interpreted as

stemming from a sequence of probabilistic (parton-shower) type 1 → 2 splittings of some

original hard Born particles. The knowledge of the splitting structure will help us generate

loop events to cancel the divergences.

The attribution of a branching sequence is most easily performed using a sequential

recombination jet algorithm (and is inspired by the CKKW matching procedure [26]). We

will use the Cambridge/Aachen (C/A) algorithm [27, 28], which has important advantages

over the kt algorithm when dealing with nested collinear divergences (avoiding “junk”

jets [27]).4

As a first step, to each of the i = 1 . . . n particles in the event En, we assign a unique

“identity” index Ii ≡ i.

We then run the Cambridge/Aachen (C/A) algorithm on the event. It repeatedly

clusters the pair of particles that are closest in angle, i.e. with smallest dij = ∆R2
ij/R

2
LS

where ∆R2
ij = (yi−yj)

2+(φi−φj)
2 is the usual squared angular distance in the (y, φ) plane,

and RLS is a free parameter, the LoopSim radius. The C/A algorithm continues until all

the dij > 1, at which point the remaining particles are deemed to cluster with the beam.

An ij → k clustering in the C/A algorithm can be reinterpreted as a k → ij splitting.

The C/A algorithm does not distinguish in any way between i and j. However, in the soft

limit, say ptj ≪ pti, rather than viewing k as splitting to i and j, it is a better reflection

of the divergent structure of the amplitude to view k as having emitted a soft gluon j.

Then i is nothing other than particle k with some small fraction of its energy removed. To

account for this, in an ij → k clustering, if ptj < pti, then we declare that the “identity” Ik
of particle k should be the same as that of particle i, Ik = Ii. Also we record Ii as being a

“secondary emitter” and remember that the object with identity Ij has been emitted from

the object with identity Ii. (Exchange i ↔ j if pti < ptj). This is represented in figure 3b

by the fact that particle 1 is a straight line, off which particle 2 has been emitted; the

identity of the 1 + 2 combination is I1+2 ≡ I1 ≡ 1. For an iB clustering, we record Ii as

having been emitted from the beam.

The next step in attributing structure to the event is to decide which event particles

should be viewed as the Born particles, i.e. which particles are responsible for the hard

structure in the event. Inspired by the original formulation of the Cambridge algorithm [27],

for every ij → k recombination we assign a kt algorithm type hardness measure hij =

min(p2
ti, p

2
tj)∆R

2
ij/R

2
LS [31, 32].5 For every beam recombination, we assign a hardness

hiB = p2
ti.

4All jet clustering in this article is carried out using FastJet [29, 30].
5In the results shown later, we actually used hij = min(p2

ti, p
2
tj)∆R2

ij , which however is identical for our

default choice of RLS = 1.
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We then work through the recombinations in order of decreasing hardness. For an

ij → k recombination (or k → ij splitting), assuming i is harder than j, we mark Ik ≡ Ii
as a Born particle. If fewer than b particles have already been marked as Born particle, we

also mark Ij as a Born particle. For an iB recombination, we mark Ii as a Born particle.

This is repeated until b particles have been marked as Born (a particle may be marked

more than once; in such a case its marking counts only once). As an example, in figure 3,

the hardest recombination will be between particle 3 and the beam, so particle 3 is marked

as a Born particle. The next hardest recombination will that of (1 + 2) with the beam.

Therefore we mark I(1+2) = I1 = 1 as a Born particle. This exhausts the number (b = 2)

of Born particles that need to be marked.

At the end of the above procedure, every particle will have been marked as emitted

either from the beam or from another particle, and some particles will also have been

marked as secondary emitters and/or Born particles. Thus in figure 3, particle 1 is labelled

as having been emitted from the beam, it is a secondary emitter and a Born particle;

particle 2 is labelled as having been emitted from particle 1; particle 3 is a Born particle,

emitted from the beam; and particle 4 was emitted from the beam. The structure that

we attribute is of course physically unambiguous only in the presence of strong ordering of

emission angles and energies. However, as we shall argue in section 2.4, the mistakes that

we make for non-ordered configurations should have a small impact for observables with

giant K-factors.

2.1.2 Constructing virtual (loop) events

Once every particle is labelled in an event En, one can compute the result of U b
l (En), which

is a set of events En−l. For an event En with respectively b Born particles and ns non-Born

secondary emitters, we define

v ≡ n− (b+ ns) , (2.1)

to be the maximum number of particles that will be allowed to become virtual in a given

event. It is obvious that Born particles will not become virtual. Additionally, secondary

emitters will also not become virtual. To understand why, consider the event

1

2

43

(2.2)

in which particle 3 is a secondary emitter, since it emitted 4. There is a divergence for

4 to be collinear to 3 only if 3 is a final-state particle. If instead 3 is made virtual, then

the divergence for emitting 4 no longer exists (there is no divergence for emission from

internal lines in a diagram), so that the weight for the diagram in which 3 is virtual would

be the weight of the tree-level diagram times a small coefficient ε ≪ 1. This simplest

way of accounting for this is to approximate ε = 0 and thus not generate events in which

secondary emitters are made virtual (a more detailed discussion is given in appendix C).

– 7 –



J
H
E
P
0
9
(
2
0
1
0
)
0
8
4

Having understood which particles can be made virtual, the operator U b
l , when applied

on an event En, generates all the
(v

l

)

diagrams in which l particles become virtual. For the

virtual events to cancel the infrared and collinear divergences that appear in the tree-level

diagram, we need an infrared and collinear (IRC) safe procedure to make particles virtual.

For instance, the divergent weight of an event with two collinear partons i and j has to be

cancelled by that of corresponding virtual event (j makes a loop over i) when computing

the distribution of any IRC safe observable; and two collinear partons, if not virtualised,

have to remain collinear when another particle becomes virtual.

There are two ways for a particle j to make a loop:

• If it is labelled as clustering with particle i, then one has to spread the momentum of

particle j over i and all the particles that are labelled as clustering with it but which

were emitted after j according to the C/A clustering sequence (i.e. at smaller angle).

The exact procedure is explained in detail in appendix A, and is designed to ensure

that the recombination maintains any collinearity properties of non-looped particles

and is invariant under longitudinal boosts. When j is the only particle that clusters

with i, then the procedure becomes equivalent to adding the momenta of particles i

and j, pk = pi + pj, and then rescaling the energy and longitudinal components of

momentum pk such that its mass is set to 0, while leaving its transverse components

px, py and its rapidity unchanged.

• If particle j is labelled as clustering with the beam, then when it is “looped” it is

simply removed from the event. Note that looping particles with the beam is less

trivial than it may seem at first sight, because of an interplay with factorisation and

the PDFs. Nevertheless it can be shown, appendix B, that for particle types that are

included in the PDFs it does make sense to loop them. A pt imbalance will result

from the looping of particles with the beam, and so after all loops have been made, we

apply a transverse boosts to all remaining event particles, conserving their rapidities,

so as to bring the total transverse momentum to zero (again, see appendix A).

There is some arbitrariness to our procedures for producing physical kinematics in the

looped events. One avenue for future work would be to examine the impact of making

different choices.

The operator U b
l has the following properties

U b
0 = 11 , U b

l (En) = 0 if l > v . (2.3)

If wn is the weight of event En, then each of the events generated by the U b
l (En) operator

has a weight

wn−l = (−1)lwn . (2.4)

Once all the U b
l (En) have been calculated for l = 0 . . . n − b, one has to combine them in

order to subtract all the soft and collinear divergences that appear in the calculation of

En and the virtual diagrams generated from it. This is done by the operator U b
∀, which is

defined as

U b
∀ ≡

v
∑

l=0

U b
l . (2.5)
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It generates all the necessary looped configurations that have the same order in αs as the

original tree-level diagram. It is straightforward to see that the total weight of the diagrams

obtained from the U b
∀ operator is 0. Indeed, if we apply it to an event En whose maximum

number of virtual particles is v, we get

wn

v
∑

l=0

(−1)l
(

v

l

)

= 0 , (2.6)

for v > 0.

We note that the above procedure for approximating loop diagrams does not generate

the finite terms needed to cancel the scale-dependence of lower-order diagrams. While it

would be straightforward to include such terms, we believe that in the absence of full loop

calculations, not including them helps ensure that the standard procedure of variation of

renormalisation and factorisation scales is more likely to provide some form of reasonable

estimate of the uncertainties on our results.

2.1.3 Some examples

In order to illustrate the action of the operator U b
l , we give below some simple examples

in the pure glue case. In each of these examples, only the Born particles are labelled with

numbers

U b=2
l=1













1

2












= −

1

2

−

1

2

, (2.7a)

U b=2
l=2













1

2












=

1

2

, (2.7b)

U b=2
l=2













1

2












=

1

2

+

1

2

+

1

2

, (2.7c)

U b=3
l=2













3
2

1













=

3
2

1

, (2.7d)

U b=2
l=2













1

2












=

1

2

, (2.7e)
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U b=2
l=3













1

2












= 0 . (2.7f)

Eq. (2.7a) gives an example of singly-looped configurations (“1-loop diagrams”) generated

by LoopSim when studying the 2 → 4 contributions to QCD dijet production. Eq. (2.7b)

shows the “2-loop diagrams” generated from the same event. The next equation shows

what happens if we add one more particle to the final state. If, eq. (2.7d), we now set the

number of Born particles for the same event to be 3, we obtain only one 2-loop diagram

instead of three, as represented in eq. (2.7d).6 Finally, the last two examples of eq. (2.7)

give a case with a splitting: the emitter is not looped, even if it is not a Born particle.

We also give a few examples of the action of the U b
∀ operator:

U2
∀













1

2












=

1

2

−

1

2

−

1

2

+

1

2

,

(2.8a)

U2
∀













1

2












=

1

2

−

1

2

−

1

2

+

1

2

,

(2.8b)

U2
∀













1

2












=

1

2

−

1

2

. (2.8c)

In the last case, only one particle can become virtual because there are two secondary

emitters which cannot be looped.

2.2 Treatment of flavour within LoopSim

Let us now examine some of the issues that arise if we are to extend the LoopSim method

to processes with quarks and vector bosons.

6One might reasonably be surprised by this: after all, the result for the exact two-loop diagrams is

independent of any choice of number of Born particles. The point is that if one studies soft and collinear

corrections to the 3-jet cross section, then for the events in eq. (2.7c) where the particle labelled 3 in

eq. (2.7d) is virtual, the event will resemble a two-jet event and so not pass the 3-jet cuts. However if one

studies the 3-jet cross section in a kinematic region where the cuts allow one of the jets to be much softer

than the others, then to obtain sensible results it becomes necessary to use b = 2 and include all diagrams

on the right-hand side of eq. (2.7c).
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1q q2

Figure 4. Example of an event where two quarks q1 and q2 may get recombined by the C/A

algorithm.

We start with quarks and consider the situation depicted in figure 4. In this case, apply-

ing the C/A algorithm as in the previous section will lead to the recombination of the two

quarks q1 and q2, which is clearly not physical. If flavour information is available for events,

then one can veto on such a clustering, for instance by defining the clustering distance dqq

between two quarks to be infinite. As discussed in [33] such a modification alone is not suf-

ficient to systematically guarantee sensible treatment of flavour in jet clustering. Refs. [33,

34] have both discussed the further modifications needed in the case of the kt algorithm.

A proper handling of flavour within LoopSim might seek to extend those modifications to

the C/A algorithm. However, neither of the NLO programs that we use, MCFM and NLO-

Jet++, provide information on particle flavours, so we defer such modifications to future

work and just maintain the dij = ∆R2
ij/R

2
LS distance for all partons. For observables that

are not flavour-sensitive this should not be a major drawback, given the observation [33]

that divergences associated with the mistreatment of flavour are strongly subleading. Were

we to be interested in heavy tagged quarks, more careful treatment might well be needed.

Note that there are also subtleties related to flavour and PDFs, discussed in appendix B.

What about non-QCD particles, specifically vector bosons? Let us examine the case

of Z bosons. A Z can be emitted from quarks or antiquarks and we would like this to be

reflected when establishing the approximate emission sequence, because if the Z has been

emitted from a quark, then that quark is a secondary emitter and should not be looped.

In other cases a Z boson may be the hardest isolated object in an event. Then it is to

be considered a Born particle. On the other hand we won’t necessarily wish to consider

diagrams where a Z boson is looped, because they would represent electroweak corrections,

not QCD corrections.

One issue in dealing with electroweak particles is that they are not emitted from gluons.

If one could distinguish between quarks and gluons, then this could be accounted for during

the C/A clustering, by defining the distance dgZ between a Z and a gluon to be infinite.

Since we will not know which partons are quarks or gluons, we adapt Frixione’s isolation

procedure [35] to decide if a Z boson relatively close in angle to a parton i is likely to have

been emitted from i. More precisely, if

pti >
√

p2
tZ +m2

Z

∆RiZ

RLS
, (2.9)

then we define diZ = ∆R2
iZ/R

2
LS, otherwise diZ = ∞. When recombining i and Z into a

particle k, then the identity index Ik is set equal to Ii (a quark and a Z give a quark).
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Our procedure means that a Z that is very collinear to a parton is always considered to be

emitted from that parton — this makes sense because such configurations are much more

likely to occur when the parton is a quark. In contrast a soft parton in the general vicinity

of a Z is not clustered with the Z, which is sensible given that most soft partons tend to

be gluons. Finally, for a recombination between a parton i and Z, we define the hardness

of the branching hiZ as7

hiZ ≡ min(p2
ti, p

2
tZ +m2

Z)
∆R2

iZ

R2
LS

, (2.10)

while a recombination of a Z with the beam has a hardness

hZB ≡ p2
tZ +m2

Z . (2.11)

The latter means that for an event with just a parton and a recoiling Z boson, the parton’s

beam hardness will always be lower than the Z’s, implying that for b = 1 it is the Z-boson

that will be the single Born particle, as should be the case, at least when the parton has

pt ≪ mZ, i.e. in the kinematic regime that dominates the total cross section for the Z.

Once a structure has been assigned to an event with a Z boson, the next question is

that of the looping procedure. When looping partons it remains identical to before, with

just a small extension of the recoil procedure in order to deal with decay products of the

Z boson (see appendix A). In the situations where the Z is not a Born particle (it is never

an emitter), straightforwardly following the procedure of section 2.1.2, one would deduce

that one should loop the Z as well:

U b=2
l=1













Z

3
1

2













= −

Z

1

2

−
3

1

2

(2.12)

(straight lines are partons, either quarks or gluons). The rightmost diagram, with the

looped Z, is not, however, a QCD loop diagram: it is an electroweak loop correction to

a multijet event. The LoopSim procedure does not aim to reproduce electroweak loop

corrections (though in this case it might be a reasonable approximation). Furthermore, in

any analysis that tags on Z bosons, such a diagram would not be tagged and so would not

contribute. Thus, although the LoopSim procedure naturally generates events with looped

Z bosons, events like the rightmost diagram of eq. (2.12) are simply to be discarded.

For events with W± bosons, the same procedure can be used as for Z’s. Note, how-

ever, that while the “looped” Z events may give a reasonable approximation to actual

electroweak loop diagrams, looped W± events will not. This is because W-boson emission

changes quark flavour: consider a tree-level diagram ud̄ → bb̄W+, with the W+ emitted

collinearly off the incoming d̄, converting it into a ū. The LoopSim procedure would give a

“loop” diagram ud̄ → bb̄, with the W+ looped. However no such loop diagram exists and

7This will be true in a future version of the code, but currently hiZ = min(p2
ti, p

2
tZ)∆R2

iZ .
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the correct loop diagram would instead involve uū → bb̄.8 This is closely related to the

phenomenon of Bloch-Nordsieck violation [36] that is found when considering electroweak

double logarithms. Since we in any case discard events in which electroweak bosons are

looped, this should not be a problem for the practical use of LoopSim in events with W±

bosons.

2.3 Merging NLO calculations and beyond

Before explaining how we merge exact higher orders calculations, let us mention how we

use the LoopSim method in practice on tree-level events at several different orders. We

introduce the notation X@n̄pLO to denote an approximation to the NpLO cross section for

producing X, with all loop terms estimated through the LoopSim procedure. It is obtained

by applying the U b
∀ operator to all tree-level diagrams that can contribute up to NpLO. For

instance, one can write

Z@n̄LO = U1
∀(Z@LO) + U1

∀(Z+j@LO) , (2.13a)

Z+j@n̄LO = U2
∀(Z+j@LO) + U2

∀ (Z+2j@LO) , (2.13b)

Z+j@n̄n̄LO = U2
∀(Z+j@LO) + U2

∀ (Z+2j@LO) + U2
∀ (Z+3j@LO) . (2.13c)

Notice that U1
∀(Z@LO) = Z@LO and U2

∀(Z+j@LO) = Z+j@LO. The terms U1
∀(Z+j@LO)

and U2
∀ (Z+2j@LO) simulate up to one-loop corrections, and U2

∀(Z+3j@LO) simulates up

to two-loop corrections.

Now let us see how things work beyond tree-level accuracy. We define En,l to be

a generic event at l loops (exactly calculated) with n particles in the final state. We

first consider the case where only one-loop corrections are computed exactly, so that we

have tree-level events En,0 and exact one-loop events En−1,1. As before we can apply the

unitarisation operator to the tree-level events, U b
∀(En,0). However, since we now include

exact 1-loop contributions, En−1,1, we must remove the approximate 1-loop contributions

U b
1(En,0) that are contained in U b

∀(En,0). This alone is not sufficient, because among the

extra contributions from the exact 1-loop terms, there will be pieces that are finite for a

given (n − 1)-parton configuration, but that can lead to divergences when integrated over

the (n − 1)-parton phase space. To cancel these extra divergences, we should introduce

additional approximate higher-loop contributions, which can be obtained by applying the

unitarisation operator U b
∀ to the difference between the exact and approximate one-loop

terms. So, rather than including just events En−1,1 and subtracting U b
1(En,0), we include

events U b
∀(En−1,1) and subtract U b

∀

(

U b
1(En,0)

)

. It is convenient to express this through a

new operator U b
∀,1 such that

U b
∀,1(En,0) = U b

∀(En,0) − U b
∀

(

U b
1(En,0)

)

, (2.14a)

U b
∀,1(En−1,1) = U b

∀(En−1,1) , (2.14b)

8A similar problem would appear to exist with the QCD diagram ug → bb̄u, with the incoming gluon

splitting collinearly to give uū, and the outgoing collinear u being looped. Here, however, we are saved by

the interplay between LoopSim and PDFs, as discussed in appendix B. It is crucial in this respect that all

flavours that get looped are included in the PDFs.
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where the extra subscript 1 on the U b
∀,1 indicates that it is the form to use when the exact

1-loop result is to be included. The action of U b
∀,1 depends on the number of loops already

included in the event on which it operates: we subtract the one-loop contribution returned

by LoopSim only in tree-level events. With this notation, one can compute the higher

order corrections to eqs. (2.13) to one-loop accuracy,

Z@n̄NLO = Z@NLO + U1
∀,1(Z+j@NLOonly) , (2.15a)

Z+j@n̄NLO = Z+j@NLO + U2
∀,1(Z+2j@NLOonly) , (2.15b)

Z+j@n̄n̄NLO = Z+j@NLO + U2
∀,1(Z+2j@NLOonly) + U2

∀,1(Z+3j@NLOonly) , (2.15c)

where the “only” subscript on Z+nj@NLOonly means that we take the highest order that

contributes, i.e. here αn+1
s αew, since the LO, αn

sαew, piece of Z+nj@NLO, is already taken

into account in the Z+(n − 1)j@NLO contribution. This implies that one should use

consistent renormalisation and factorisation scale choices across all different orders of the

calculation. Note that in eq. (2.15) we have introduced the notation n̄pNqLO to denote an

approximation to the Np+qLO result in which the p highest loop contributions have been

approximated with LoopSim.

A practical consideration in implementing the above procedure is that NLO Monte

Carlo programs such as MCFM [19, 20] and NLOJet++ [37, 38] don’t simply generate real

and 1-loop virtual NLO events, essentially because of the difficulty of treating the divergent

weights of the virtual events. Instead they provide real events, 1-loop virtual events with

just the finite part of the event weight, and dipole counterterm [39, 40] events. It is the sum

of the counterterm and (finite) virtual contributions that is equivalent to the full 1-loop

result. Consequently both the finite virtual and the counterterm events must be treated

as being of type En−1,1 in eq. (2.14).

The extension of the procedure beyond one-loop accuracy is simple. For instance, at

two-loop accuracy, one has to subtract the approximated two-loop contribution U b
2(En,0)−

U b
1

(

U b
1(En,0)

)

in eq. (2.14a), and the other approximated two-loop contribution U b
1(En,1)

in eq. (2.14b), giving

U b
∀,2(En,0) = U b

∀(En,0) − U b
∀

(

U b
1(En,0)

)

− U b
∀

[

U b
2(En,0) − U b

1

(

U b
1(En,0)

)]

, (2.16a)

U b
∀,2(En−1,1) = U b

∀(En−1,1) − U b
∀

(

U b
1(En−1,1)

)

, (2.16b)

U b
∀,2(En−2,2) = U b

∀(En−2,2) . (2.16c)

Therefore, once Z+j@NNLO is calculated, one may compute for instance

Z@n̄NNLO = Z@NNLO + U1
∀,2(Z+j@NNLOonly) . (2.17)

To be complete, let us mention the generalisation of our procedure to m-loop accuracy

U b
∀,m(En−l,l) = U b

∀(En−l,l) +
m−l
∑

j=1

(−1)j
∑

l1, . . . , lj ≥ 1

l1 + . . . + lj ≤ m − l

U b
∀ ◦ U b

l1 ◦ . . . ◦ U
b
lj(En−l,l) . (2.18)
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We noted at the end of section 2.1.2 that the plain LoopSim procedure does not gen-

erate the finite terms needed to cancel residual scale dependence from lower orders. With

the introduction of the exact loop contributions, those finite terms do now get included.

Thus for a given number of exact plus simulated loops, as we increase the number of exact

loops, we should expect to see reductions in scale uncertainties.

2.4 Expected precision of the method

Let us briefly explain why the LoopSim method is expected to work in the presence of

giant K-factors. We consider an observable A computed respectively at NLO and n̄LO.

We define K
(A)
NLO such that

σ
(A)
NLO = K

(A)
NLOσ

(A)
LO , (2.19)

and we assume that K
(A)
NLO ≫ 1. This huge K-factor may come from logarithmic en-

hancements in the real NLO diagram or the appearance of new scattering channels in the

perturbative expansion. The computation of σ
(A)
n̄LO gives the exact real part of the NLO

calculation as well as the divergent terms of the virtual correction. Therefore

σ
(A)
n̄LO − σ

(A)
NLO = O

(

αsσ
(A)
LO

)

, (2.20)

where, in writing O(αsσ
(A)
LO ), we mean that the term missing in the n̄LO calculation, the

finite part of the 1-loop correction, is not especially enhanced. This leads to

σ
(A)
n̄LO = σ

(A)
NLO

(

1 + O
(

αs

K
(A)
NLO

))

. (2.21)

The relative difference between the approximate and exact NLO calculations is thus sup-

pressed by the inverse K-factor.

Next, consider n̄NLO accuracy. The difference between σ
(A)
n̄NLO and σ

(A)
NNLO comes from

the parts of the two-loop corrections that are finite and associated with the LO topology,

so that they should be free of the enhancements that led to the large NLO K-factor. This

implies

σ
(A)
n̄NLO − σ

(A)
NNLO = O

(

α2
sσ

(A)
LO

)

. (2.22)

If we define K
(A)
NNLO such that σ

(A)
NNLO = K

(A)
NNLOσ

(A)
LO , then we can write

σ
(A)
n̄NLO = σ

(A)
NNLO

(

1 + O
(

α2
s

K
(A)
NNLO

))

. (2.23)

If K
(A)
NLO ≫ 1, one can expect K

(A)
NNLO ≫ 1 too.

3 The reference-observable method

Given the novelty of the LoopSim method, it is useful to have an alternative way of esti-

mating the size of the NNLO contributions that we will approximate with LoopSim. Here
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we outline such an alternative method, which, though less flexible than the LoopSim ap-

proach, will provide a valuable cross-check and help us build our confidence in results of

the LoopSim method.

Let us explain it for observables in the Z+j process. Our aim is to estimate σ
(A)
NNLO for

some observable A.9 We assume that we have a reference observable which is identical to

the observable A at LO. For instance, one might consider ref = pt,Z and A = pt,j. We can

write the NNLO Z+j prediction for A in terms of the NNLO prediction for the reference

observable plus the NLO Z+2j difference between A and the reference cross section

σ
(A)
Z+j@NNLO = σ

(ref)
Z+j@NNLO + (σ(A) − σ(ref))Z+j@NNLO , (3.1a)

= σ
(ref)
Z+j@NNLO + (σ(A) − σ(ref))Z+2j@NLO . (3.1b)

The second equality is possible because 2-loop NNLO corrections to Z+j have the topology

of Z+j at LO. Therefore, their contributions to the observables A and ref are identical and

cancel in the difference in eq. (3.1a).

If we have reason to believe that the perturbative expansion for the reference observ-

able converges well, we can conclude that σ
(ref)
Z+j@NNLO − σ

(ref)
Z+j@NLO is genuinely a small

correction. Then

σ
(A)
Z+j@NNLO ≃ σ

(ref)
Z+j@NLO + (σ(A) − σ(ref))Z+2j@NLO , (3.2)

i.e. we approximate the NNLO distribution for A in terms of the NLO distribution for the

ref observable and a NLO calculation for difference between the A and ref distributions,

both of which are exactly calculable. The missing part is suppressed by a relative factor

1/K(A), as for the LoopSim method. For Z+j, one can see from figure 1 that pt,Z seems to

be an acceptable reference observable for pt,j and HT,jets.

In the sections that follow we shall, for brevity, refer to the r.h.s. of eq. (3.2) as “ref.

n̄NLO” even though it does not quite adhere to our the meaning of n̄NLO as set out

in section 2, i.e. in terms of the specific sets of tree-level and loop diagrams that are

included exactly.

4 Validation: comparison to DY at NNLO

The cross section for the Drell-Yan process is known with exclusive final states up to NNLO

accuracy [41, 42]. Above a certain value of lepton transverse momentum, one finds giant

corrections to the lepton pt spectra when going from LO to NLO and large ones from NLO

to NNLO. This gives us an opportunity to directly test the performance of the LoopSim

method by comparing its n̄NLO results to exact NNLO spectra for lepton pair production.

Before examining n̄NLO results, it is useful to compare n̄LO with NLO. If they are in

reasonable agreement for some observable, then that serves as a first indication that the

LoopSim estimate of missing loop corrections is sensible for that observable.

9More precisely, σ(A) is the cross section for the observable A to pass some given cuts; it is only for

brevity that we use here the somewhat inaccurate shorthand “cross section for observable A”.
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Figure 5. Comparison between n̄LO results from LoopSim (with RLS = 1) and exact NLO

results for the Drell-Yan process. The left-hand plot shows the transverse momentum spectrum

of the harder lepton, while the right-hand plot gives the corresponding K factors w.r.t. LO. The

uncertainty bands were obtained by varying µr = µf by a factor of 1
2

and 2 around a default choice

of mZ.

Figure 5 gives the comparison of the n̄LO, NLO and LO results for the production

of an e+e− pair within the mass window of 66 < me+e− < 116 GeV at a proton-proton

centre of mass energy of 14 TeV. The left-hand plot shows the cross section differential in

the transverse momentum of the harder of the two leptons. The right-hand plot gives the

corresponding K factor with respect to LO. The results were obtained with MCFM 5.3 [19,

20, 43], with its default set of electroweak parameters and NNLO MSTW2008 parton

distribution functions.10 The uncertainty bands in figure 5 correspond to varying the

renormalisation and factorisation scales µr = µf by a factor of 1
2 and 2 around a default

choice of mZ. In the n̄LO result we fixed the value of the LoopSim radius parameter to

be RLS = 1, which naturally places interparticle and particle-beam clustering on the same

footing (though the n̄LO result here is actually independent of RLS, because there is at

most one isolated QCD parton in the final state).

There are three relevant regions of transverse momentum in figure 5. For pt,max . 1
2mZ

(low pt) the distribution is dominated by on-shell Z-bosons and its shape is governed by

the angular distribution of the Z decays in their centre-of-mass frame. The peak close

to 1
2mZ corresponds to Z-bosons that decay in a plane at right-angles to the beam. For

1
2mZ . pt,max < 58GeV (intermediate pt), the LO distribution comes from Z-bosons that

are off shell, which allows the pt of the lepton to be larger than 1
2mZ. The narrow width

of the Z, ΓZ ≪ mZ, causes the distribution to fall very steeply. The 58GeV upper edge of

10 Throughout this paper, when comparing different orders of a calculation, we always use a common

order for the choice of PDF, for example here, NNLO PDFs even for the LO calculation. This choice is

motivated because we are interested purely in the NLO/NNLO effects that come from the higher-order

matrix-element corrections and wish to avoid obscuring these effects by mixing them with changes due to

different orders of PDFs or associated αs choices.

– 17 –



J
H
E
P
0
9
(
2
0
1
0
)
0
8
4

102

103

104

105

 0  10  20  30  40  50  60  70  80  90  100

dσ
/d

p t
,m

ax
 [f

b/
G

eV
]

pt,max [GeV]

pp, 14 TeV
66 < me+e- < 116 GeV

NLO
–nNLO

NNLO

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

 10  20  30  40  50  60  70  80  90  100

K
 fa

ct
or

 w
rt

 N
LO

pt,max [GeV]

pp, 14 TeV
66 < me+e- < 116 GeV

NLO
–nNLO (µ dep)
–nNLO (RLS dep)

NNLO

Figure 6. Comparison between n̄NLO results from LoopSim+MCFM (with RLS = 1) and full

NNLO results for the Drell-Yan process from DYNNLO. The left-hand plot shows the transverse

momentum spectrum of the harder lepton, while the right-hand plot gives the corresponding K

factors w.r.t. NLO. The uncertainty bands come from varying the factorisation and renormalisation

scales by factors 1/2 and 2. In the right-hand plot we also show the (thin) band related to changing

the n̄NLO RLS parameter from 0.5 to 1.5, at fixed µr = µf = mZ.

this region is a consequence of our cut on me+e− < 116GeV. Above 58GeV (high pt) the

LO distribution is zero.

In the low pt region, the NLO correction is moderate and negative. There is no strong

reason to believe that the LoopSim method should work here, but it turns out that the

n̄LO result reproduces the structure of the correction, even if its scale dependence remains

much larger than that of the NLO result (this is because the LoopSim procedure does

not include the finite terms that would partially cancel the LO scale dependence). In the

intermediate pt region, we see a “giant” NLO K-factor. It comes about because initial-state

radiation can give a boost to the Z-boson, causing one of the leptons to shift to higher pt

(it becomes the “max” lepton). The spectrum of QCD radiation falls much less steeply

than the Z-boson lineshape, so this NLO correction dominates over the LO result. In this

region the exact loop correction, proportional to the LO result, becomes almost irrelevant

and we see near perfect agreement between n̄LO and NLO. In the high-pt region only the

real emission diagrams of Z@NLO contribute and n̄LO becomes identical to NLO (both

correspond to the Z+j@LO result). Similar results hold for the pt,e± distribution, while

the pt,min lacks the giant K-factor in the intermediate region.

A similar comparison between n̄NLO and NNLO spectra is shown in figure 6. The

NNLO results were obtained with DYNNLO 1.0 [42, 44, 45], used with a set of electroweak

parameters compatible with that of MCFM.11

11In its O(αs) and O
`

α2
s

´

contributions, DYNNLO includes among its parameters a cut on the pt of the

Z boson. The cut is applied to both real and virtual terms and its impact should vanish as it is taken

towards zero. It is, however, required to be non-zero for the numerical stability of the MCFM Z+j NLO

calculation that is among the components of DYNNLO. We set the cut equal to 0.1 GeV in the O(αs) term
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In the low-pt region we find quite good agreement between the n̄NLO and NNLO results

(with somewhat larger uncertainty bands for n̄NLO). Such a result was not guaranteed

a priori, even if it is not entirely surprising given the reasonable agreement that we saw

between n̄LO and NLO. In the intermediate pt region, where the NNLO/NLO corrections

are substantial, the agreement is excellent. This was expected. At high pt the agreement

should be exact, and does seem to be, within statistical fluctuations. The dependence on

RLS (shown in the right-hand plot) has been estimated by varying its value from 0.5 to

1.5. The effects are small.

Finally, we note that similar features and a similar level of agreement between n̄NLO

and NNLO are to be found in the pt,min and pt,e± distributions.

5 Results for the Z+jet process

In the previous section, we studied the Z production process and showed that our procedure

correctly reproduces the pt distribution of the hardest lepton at NNLO, even, unexpectedly,

in regions where the K-factor is not large. In this section we study the Z+j process, whose

NNLO cross-section is not known yet, but which leads to giant K-factors at NLO for some

observables as explained in the introduction. Therefore, their NNLO contributions are

expected to be accurately described by the LoopSim method. Throughout this section

we use MCFM 5.7, including the Z+2j process at NLO [46], with the NLO CTEQ6M

PDFs. We will take three different values for the renormalisation and factorisation scales:

µr = µf = 1
2µ0, µ0 and 2µ0, with

µ0 =
√

m2
Z + p2

t,j1 , (5.1)

where pt,j1 is the transverse momentum of the hardest jet. At high pt, this scale choice

should be quite similar to that used in [47] and has the same pt scaling as those in [14, 15].

The RLS uncertainty is measured at µr = µf = µ0 using three different values for it:

RLS = 0.5, 1, 1.5.

In addition to the 3 observables shown in the introduction, pt,Z, pt,j1 and HT,jets =
∑∞

i=1 pt,ji, we will also consider

HT,tot ≡ HT,jets + pt,Z . (5.2)

We only include events for which pt,j1 > 200GeV.

5.1 Validation at n̄LO

As a first investigation of the performance of the LoopSim method, let us examine how the

n̄LO approximation compares to the full NLO result. Figure 7 shows the K-factors for the

n̄LO and NLO predictions, with uncertainty bands from scale and RLS variations.

and to 1GeV in the O
`

α2
s

´

term. A related 1GeV cut was placed on the O
`

α2
s

´

piece of the n̄NLO result

(while none was used at O(αs)). The impact of the 1 GeV cut is small but not entirely negligible close to

the peak (where, physically, NNLO should in any case be supplemented with a resummation).
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Figure 7. Comparison of the n̄LO/LO K-factor with the NLO/LO K-factor, together with their

scale and RLS uncertainties for four observables in the Z+jet process.

In the upper-left plot, one sees that the n̄LO prediction for the pt,Z distribution gives

a somewhat smaller K-factor than the NLO result. We interpret this as being because

certain genuine loop effects are not taken into account by the LoopSim method.12 The

n̄LO result does, however, reproduce the pt dependence of the K-factor, i.e. the dip towards

pt = 200GeV. This dip arises because of the requirement in our event selection that there

should be at least one jet with pt > 200GeV. At LO this induces a step-function in the

pt,Z distribution at 200GeV. At NLO, soft and collinear emissions smoothen out that

threshold and the n̄LO calculation correctly reproduces the resulting interplay between

real and virtual terms.

In the three remaining plots of figure 7, for pt,j1, HT,jets and HT,tot, all of which have

12An example of a well-understood loop effect that is not accounted for by LoopSim is threshold log-

arithms; further work would be required, however, to identify the precise physical origin of the K-factor

being seen specifically here.
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giant K-factors, one sees good agreement between the n̄LO and NLO results. This is

because the dominant NLO contribution comes from events in the B and C-type configu-

rations of figure 2, for which there is no corresponding QCD loop correction. The LoopSim

method merely serves to cancel the divergences that arise from soft and collinear emissions

off A-type configurations and these are not dominant overall.

The RLS dependence, also shown on these four plots, only comes from 1-loop events

generated by LoopSim. Therefore, for an observable A studied in Z+j@n̄LO with two

different values R0 and R1 for RLS, one can write:

σ
(A)
Z+j@n̄LO,R1

− σ
(A)
Z+j@n̄LO,R0

= σ
(pt,Z)
Z+j@n̄LO,R1

− σ
(pt,Z)
Z+j@n̄LO,R0

(5.3)

as long as A coincides with pt,Z at LO (it does for each of pt,j1, HT,jets and 1
2HT,tot). This

means that the absolute uncertainty due to RLS is the same for A and pt,Z. Therefore,

the relative uncertainty due to RLS is expected to be roughly inversely proportional to the

K-factor for A, in analogy with the discussion of section 2.4. This explains why the RLS

dependence (solid cyan band) looks significantly smaller for pt,j1, HT,jets and HT,tot than

it does for pt,Z plot.

5.2 Results at n̄NLO

Results at n̄NLO are given in figure 8. In the case of pt,Z the result is similar to the NLO

result, and the scale uncertainties remain largely unchanged. In other words, since Z+2j

topologies do not dominate the high-pt,Z distribution, adding NLO corrections to them (i.e.

n̄NLO Z+j) makes no difference either to the result or to the uncertainties. We have also

shown the dependence on the choice of R in the LoopSim procedure. It is smaller than the

scale dependence.

The pt,j1 distribution gets a correction that is just within the NLO uncertainty band,

with n̄NLO uncertainties that are about half the size of the NLO band. Adding in the

n̄NLO term has made a real difference. This is precisely what we expect: the observable is

dominated by Z+2-parton configurations, and these were only present at tree-level in the

NLO Z+j calculation. Our use of n̄NLO provides the additional 1-loop Z+2-parton and

tree-level Z+3-parton configurations that come with NLO Z+2j accuracy.

Given the improvement in scale uncertainty, we need to ask whether the uncertainty

due to RLS variation might somehow eliminate part of this benefit. It is, however, small.

The reasons are similar to those given around eq. (5.3).

TheHT,jets andHT,tot distributions get significant n̄NLO corrections, with n̄NLO/NLO

K-factors of about 1.7−2. Absolute scale uncertainties increase slightly compared to NLO,

but because of the large K-factor, relative scale uncertainties diminish. At first sight, it

is somewhat disturbing that the n̄NLO and NLO uncertainty bands don’t overlap. Given

the novelty of the LoopSim method, one should therefore ask whether this is reasonable

and whether there is any way of cross-checking the result.

A first observation is that since n̄NLO Z+j is really NLO of the dominant Z+2j com-

ponent, the large n̄NLO corrections that we see are comparable to an O(2) K-factor for

going from LO to NLO in the Z+2j prediction. There are many contexts where NLO and
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Figure 8. Comparison of the n̄NLO/LO K-factor with the NLO/LO K-factor, together with their

scale and RLS uncertainties for four observables in the Z+jet process.

LO results are not compatible within scale uncertainties, and so it is not unreasonable that

the same should be seen here.

Still, we would like to have some more quantitative cross checks that our results are

sensible. One option is to consider the alternative “reference-observable” method presented

in section 3, which only makes use of standard NLO calculations to compute the approx-

imate NNLO corrections. The comparison between the two methods is shown in figure 9

for HT,jets and pt,j1, where we have taken pt,Z as the reference observable. One notices

near perfect agreement for HT,jets and very good agreement for pt,j1. This gives us some

degree of confidence that the n̄NLO LoopSim results provide an accurate description of

the NNLO behaviour for these observables.

A second option for cross-checking the large n̄NLO effects for HT,jets and HT,tot, is to

examine whether HT type observables might generally be “difficult”. To do so we look at

them in the case of QCD jet events.
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Figure 9. Comparison between the approximate NNLO/LO K-factor calculated using respectively

the LoopSim and the “reference-observable” method for pt,j1 and HT,jets. As a reference observable

we have used the differential cross section for pt,Z.

6 QCD jet events as a testing ground

We have seen that the n̄NLO K-factors for the two effective-mass variables, HT,tot and

HT,jets, in Z+jet(s) events are about a factor of two above the NLO K-factor.

Since NLO is the first order at which we see the dominant “dijet” topology for the HT

variables in Z+jet(s), figure 2B,C, it might be instructive to establish a correspondence

with a simpler process, QCD dijet production. Having a NLO Z+j prediction is analogous

to a LO dijet prediction; and the n̄NLO Z+j predictions should be analogous to NLO dijet

predictions. NLO cross sections for dijet observables can be calculated exactly and therefore

we can check whether NLO K-factors of order 2 appear for effective-mass observables in

pure QCD events.

We will consider several effective-mass observables: an HT,n variable, which sums over

the n hardest jets above some threshold (pt,min = 40GeV; such a cut is often imposed

experimentally13)

HT,n =

n
∑

i∈jets with pt,ji > pt,min

pt,ji , (6.1)

where pt,i is the transverse momentum of the ith hardest jet. Upper limits on the number

of jets included in the effective mass are common in SUSY searches [3, 4]. We also define

an effective mass for all jets above the pt,min threshold,

HT ≡ HT,∞ , (6.2)

which is similar to the HT,jets and HT,tot observables of section 5. Finally, for completeness

we will consider the distributions of pt,j1, pt,j2 and the inclusive jet spectrum. All our

13In section 5 we did not apply this kind of cut on the HT variables; one purpose in applying it here is

to ascertain whether the large higher-order effects persist even with it.
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Figure 10. Left: differential cross sections for the pt,j2 and 1
2
HT observables, at LO, where they are

identical, and at NLO where they have substantially different K-factors. Right: the NLO K-factors

for the 400 < V/GeV < 500 bin for each choice of variable V among the following: the inclusive

jet spectrum, the pt distribution of the hardest (pt,j1) and second hardest (pt,j2) jets, (half) the

effective mass of the two hardest jets (HT,2), three hardest jets (HT,3) and of all jets above 40 GeV

(HT ). Also shown on the right are the n̄LO results for the K-factors. The NLO and n̄LO (µ)

widths correspond to the uncertainty due to simultaneous renormalisation and factorisation scale

variation by a factor of two around a central value µ = pt,j1. The n̄LO(RLS) width shows the

uncertainty from a variation of RLS in the range 0.5 < RLS < 1.5.

results in this section will be for a centre-of-mass energy of 7TeV, to allow comparison to

results in the current run of the LHC.

At LO, the distributions of 1
2HT,n (n ≥ 2), 1

2HT , pt,j1, and pt,j2 will all be identical.

The inclusive jet spectrum will have a distribution that is twice as large (because each of

the two jets contributes). Note that we do not impose any rapidity acceptance limits on

the jets: though such a cut would have been trivial to include in the LoopSim procedure, it

would have complicated somewhat the reference-observable approach that we will consider

at the end of the section. LoopSim results with a rapidity cuts of |y| < 2 on the jets are

available from the authors on request.

Figure 10(left) shows the distributions for two observables, 1
2HT and pt,2 at LO (where

they are identical) and at NLO, as determined using NLOJet++ [37, 38] with CTEQ6M

PDFs. A first comment is that HT receives a NLO K-factor of order 2, just like the n̄NLO

enhancements in the Z+j case. This provides supporting evidence as to their legitimacy.

A second comment is that the cross sections are large: these observables will be easily

accessible with a few pb−1 of integrated luminosity at a 7TeV LHC, allowing for an early

experimental verification of the large K-factor for HT .

The other observable in the left-hand plot of figure 10, pt,j2, has a very different K-

factor, somewhat below 1. The right-hand plot shows the NLO K-factors for our full range

of observables, focusing on a single bin of the left-hand one, from 400 − 500GeV. The
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pattern that we see here allows us to make some deductions. Firstly, the HT,2 variable,

which sums the pt’s of the two leading jets, is free of large NLO enhancements. It is the

addition of the third jet in HT,3 and HT that brings about the enhancement. A natural

interpretation is the following: it is common for a third, soft jet to be present due to

initial state radiation. This third jet shifts the HT distribution to slightly larger values,

and because the distribution falls very steeply, that leads to a non-negligible enhancement.

This suggests that if, in section 5, we had used effective mass observables with at most

two objects in the sum, then the n̄NLO/NLO ratios would have been close to 1. We have

verified that this is indeed the case.

The pattern for pt,1 and pt,2 in figure 10 can also be explained in similar terms: a soft

ISR emission boosts the hard dijet system, breaking the degeneracy between the pt’s of

the two hardest jets. It is jet 1 that shifts to larger pt (giving a K-factor > 1), while jet

2 shifts to lower pt and so it gets a K factor below 1. For the inclusive jet spectrum, and

for HT,2, this effect balances out. In addition, final-state radiation from one of the jets can

cause it to shift to lower pt (becoming the 2nd jet), further reducing the K-factor for the

distribution of pt,j2.

Of the different variables, it is only the inclusive jet pt and HT,2 for which there is a

clear reduction in scale uncertainty in going from LO to NLO.

Figure 10(right) also shows the n̄LO results (including uncertainties both from scale

variation and from the LoopSim parameter RLS). Despite the fact that none of the K-

factors is parametrically large (except arguably for HT,3 and HT ), the n̄LO results are

remarkably effective at reproducing the pattern of NLO K-factors, albeit with a small

systematic shift and generally larger scale uncertainties. One can also verify that, to

within 10 − 20%, the pt dependence of the NLO K-factors is reproduced at n̄LO.

Given this success of n̄LO, and the observed limited convergence of some of the observ-

ables at NLO, it is interesting to examine what happens at n̄NLO, where the additional

3j@NLO contribution that we require is again obtained using NLOJet++. Results are shown

in figure 11.

For the inclusive jet spectrum and HT,2, which already saw large reductions in scale-

dependence at NLO, the n̄NLO corrections have essentially no meaningful effect: they

neither significantly affect the central values, nor reduce the scale uncertainties. For these

observables, NLO already converged well, and adding a subset of the NNLO corrections

without the 2-loop part cannot improve the result.

For the other effective mass observables, the situation is quite different. With HT,3,

the n̄NLO result is close to the NLO result and the scale uncertainty is much reduced,

i.e. this observable seems to come under control at n̄NLO. In contrast, HT is subject to

quite a large further correction, with the central value at n̄NLO lying outside the NLO

uncertainty band, and the n̄NLO uncertainty band (dominated by scale variation) only

marginally smaller than at NLO. Why is this? Perhaps we are seeing the effect of a second

ISR emission, which shifts the HT distribution to even higher values? Given that HT,3

converges and HT does not, such an explanation is not unattractive. It is also consistent

with the decrease inK-factor at low HT , where the 40GeV pt cutoff on the jets contributing

to the HT sum will eliminate the ISR enhancement. A definitive conclusion would however
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Figure 11. The n̄NLO and NLO K-factors relative to the LO predictions, as a function of pt (or
1
2
HT , etc.), for the collection of jet observables described in the text.

probably require further study.

For the remaining two observables, pt,1 and pt,2, the n̄NLO contribution goes in the

opposite direction from the NLO correction and at low pt it seems that the series fails

to converge. This is, we believe, closely related to observations of insufficiencies of NLO

predictions for dijet cross sections in DIS and photoproduction when identical pt cuts are

imposed on both jets [48–52] (equivalent to integrating the pt2 distribution above that cut).

The worse convergence at low pt is probably due to the larger fraction of subprocesses that

involve gluons in the underlying 2 → 2 scattering, so that perturbative corrections tend to

go as (CAαs/π)n rather than as (CFαs/π)n at higher pt.

Considering that we do not have giant NLO K-factors for the jet processes shown here,

one may question the validity of the information obtained from the LoopSim procedure. An

important cross check comes from a comparison with the reference-observable technique.

Examining figure 10 (right), one sees two natural reference observables: the inclusive jet

spectrum and HT,2, both of which show “perturbative” K-factors and small scale depen-

dence at NLO. Here we will use (half) the inclusive jet spectrum as the reference observable

(results with HT,2 would be almost identical).

Figure 12 provides a comparison of the LoopSim n̄NLO results (showing the envelope

of the scale and RLS uncertainties) with the reference-observable n̄NLO results. The com-
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Figure 12. Comparison of LoopSim based n̄NLO results with those from the reference-observable

method, here using the inclusive jet pt spectrum as the reference observable. In the LoopSim results

(labelled n̄NLO), the uncertainty bar spans the envelope of the scale and RLS uncertainties. The

results are for the 400 < V/GeV < 500 bin for each observable V , as in figure 10.

parison is given for all observables except the reference observable itself. The agreement

between the two methods is striking, with the reference-observable method giving just a

small shift of the K-factors relative to the LoopSim results. The shift is identical for all

the observables, as it has to be: it is simply equal to the difference between the NLO and

n̄NLO results for the reference observable. Insofar as we believe the scale dependence to be

representative of the true NLO uncertainty on the inclusive jet spectrum,14 the results for

the other observables should therefore be good approximations to the full NNLO results.

7 Conclusions

Several cases of LHC observables with giant NLO K-factors have come to light in recent

years. They are characterised by the presence at NLO of new partonic scattering topologies

that have large enhancements over the LO topologies. In these cases, NLO calculations,

while important in highlighting the presence of the large K-factors, cannot on their own

provide accurate predictions.

In this article we have examined how to address this problem by combining NLO re-

sults for different multiplicities, for example Z+j@NLO with Z+2j@NLO. Our main, most

flexible method, LoopSim, makes use of unitarity to cancel the infrared and collinear di-

vergences that appear when one tries, say, to apply Z+2j@NLO calculations to observables

that are non-zero starting from Z+1-parton. We referred to the result as Z+j@n̄NLO,

14In light of the fact that the n̄NLO uncertainty for the inclusive jet spectrum is larger than the NLO

uncertainty, it may be that our symmetric scale variation is underestimating somewhat the uncertainties

present at NLO. To be conservative, it might have been safer to vary the renormalisation and factorisation

scales independently.
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where the “n̄” indicates that the highest loop contribution to the NNLO result (the two-

loop part) has been estimated with LoopSim.

In introducing a new approximate method for estimating NNLO corrections, significant

evidence needs to be provided that the method is meaningful. Firstly, we gave reasons why,

in cases with giant K-factors associated with new NLO topologies, we expect n̄NLO results

to be a good approximation to NNLO results. As a next step, we carried out studies com-

paring Z/γ∗@n̄NLO (DY) to NNLO predictions for the pp→ Z/γ∗+X → e+e−+X process.

In comparing the DY lepton pt n̄NLO distributions to NNLO we found near-perfect agree-

ment in a region of giant K-factors, pt− 1
2mZ & ΓZ . Interestingly, even in the region where

the NLO K-factor was not large, pt . 1
2mZ , the n̄NLO results provided a significantly bet-

ter approximation to NNLO than did the plain NLO result. This need not always be the

case, but is, we believe, connected to the observation that our n̄LO results reproduced much

of the structure seen at NLO (recall, Z@n̄LO means combining Z@LO with Z+j@LO).

For Z+j production, the first step of our validation procedure was to compare n̄LO

and NLO results. All observables with giant K-factors showed good agreement between

the two (one with a moderately large K-factor did not). For those observables, n̄NLO

always appeared to provide extra information: either suggesting a convergence of the per-

turbative series, with reduced scale uncertainties (for pt,j1), or an indication of substantial

further higher order corrections (for the effective-mass type observables HT,jets and HT,tot).

Almost identical results were seen with our alternative “reference-observable” estimate of

the NNLO contribution.

The large n̄NLO corrections that we saw for effective mass observables led us to exam-

ine a range of effective-mass and jet observables in the simpler context of pure jet events

(with the expectation that Z+j@NNLO might be similar to 2j@NLO). There we saw a

significant NLO K-factor for all effective mass variables except one, HT,2, which summed

over just the two leading jets. In the Z+j case we had summed over all jets and hence it is

not surprising that we should have observed substantial n̄NLO/NLO ratios.

Even though the observables in the pure jets case did not display giant K-factors,

the pattern of NLO results was remarkably well reproduced at n̄LO. This encouraged us

to study n̄NLO predictions, which provided substantial extra information for several of

the observables, with the reference-observable method again giving important cross checks.

Since the cross sections for the jet observables are large, these results could easily be tested

with early LHC data.

We close this article with a few lines on the relation between LoopSim and other

predictive methods. There is a close connection between n̄LO (or n̄n̄LO) and CKKW and

MLM [26, 53] matching, since they also both provide ways of combining tree-level results

with different multiplicities. Of course CKKW and MLM matching provide an interface

with parton showers too, which the LoopSim method does not. On the other hand it is

significantly easier to include multiple loop orders into the LoopSim method than it is

within matrix-element/parton-showering matching procedures (though work is ongoing in

this direction see e.g. [54]).

An interesting cross-check of the LoopSim method will come with the completion of the

NNLO calculations for the Z+j and dijet processes. At that point the method could also,
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for example, be used to merge Z@NNLO with Z+j@NNLO, so as to provide an n̄NNLO

prediction for quantities like the Drell-Yan lepton pt spectrum. The value of the LoopSim

method also goes hand-in-hand with progress on 1-loop calculations, especially with the

prospect of automated NLO calculations now on the horizon (for example [22, 55, 56]).

Note that the LoopSim code, which will be made public in due course, can currently

only deal with hadron-collider processes involving any number of light partons and up to

one vector boson. It would benefit from further work to appropriately include heavy quarks

and additional bosons.
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A Recoil procedure

In this appendix, we provide further details on how we perform the recoil of an event when

a particle becomes virtual, including the treatment of the decay products of the Z boson.

We first examine the simpler case of a particle that makes a loop with the beam, then we

show how to deal with a particle that makes a loop with another particle.

A.1 A particle recombines with the beam

Let us assume that particle i0 makes a loop with the beam. To balance the event transverse

momentum, we follow the following procedure:

1. For each particle i 6= i0, store its rapidity yi.

2. Perform a separate longitudinal boost on each particle so as to bring its rapidity to

0 (i.e. get a purely transverse event).

3. Compute

Etot =
∑

i6=i0

Ei , (A.1)

where Ei is the energy of particle i in the purely transverse event.
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Figure 13. Case where four gluons are emitted from the same quark. Gluon 1 is the last to be

clustered with the quark (which roughly corresponds to an early time emission) and gluon 4 is the

first to be clustered. In the event where gluon 2 makes a loop over the quark, we spread the gluon

2’s momentum over the quark’s momentum and the momenta of gluons that were emitted after it,

i.e. gluons 3 and 4 (an earlier time emission like gluon 1 cannot be affected).

4. Define

k = (E = Etot, ~pt = ~pt,i0, pz = 0) , (A.2)

and boost all particles by the 4-vector k, so that the final total transverse momentum

of the event is zero.

5. Perform a longitudinal boost on each particle so that it recovers its original rapidity

yi.

For the case where two particles, i0 and i1, are looped with the beam, replace i 6= i0 with

i 6= i0, i1 and in eq. (A.2) replace ~pt,i0 with ~pt,i0 + ~pt,i1, etc. In the case where the Z decays,

for instance into 2 leptons, the procedure is identical except that we apply to the leptons

the same longitudinal boosts as for the Z (the rapidity of the leptons is thus not necessarily

0 when we apply the transverse boost). This conserves the property that the sum of the

leptons’ momenta is still the Z momentum in the “looped” event.

The logic of the above procedure is that if we had attempted to apply a transverse

boost without stages 2 and 5, we would have found that our choice of transverse boost,

and the corresponding mapping of high-pt particles’ momenta, would be affected by the

presence of energetic particles collinear to the beam. This would have made the procedure

collinear unsafe.

A.2 A particle recombines with another particle

Let us consider the situation depicted in figure 13: four gluons are emitted from the same

quark, but at different angles:

θ1q ≫ θ2q ≫ θ3q ≫ θ4q , (A.3)

and gluon 2 becomes virtual. The virtualisation of gluon 2 over the quark cannot have an

impact on gluon 1, which was emitted earlier in an angular-ordered picture. But it has an

impact on gluons 3 and 4. More precisely, let the pi be the momenta in the original event

and p′i the momenta in the event where gluon 2 is virtual. We define

pt,tot = pt,q + pt,3 + pt,4 . (A.4)
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and then set the p′i as follows:

p′i = pi +
pt,i

pt,tot
p2 for i = q, 3, 4 , (A.5a)

p′1 = p1 . (A.5b)

Subsequently each particle’s p′i momentum is adjusted such that its mass is 0 (or mZ if

gluon 3 is a Z boson rather than a gluon), keeping its transverse components px, py and its

rapidity unchanged. This can be easily generalised to any number of particles recombining

with the same hard one: for each recombined particle i, we spread the looped particle over

the hard particle h and over any non-looped emissions from h that are at smaller angle

(i.e. earlier in the C/A clustering sequence) than i. In eqs. (A.4), (A.5a) it is always the

original particle momenta that are used to determine the pt,i/pt,tot ratio, so that the result

is independent of the order in which we perform the recombinations.

This procedure is designed to ensure collinear safety: if, for instance, gluon 4 is collinear

to the quark in the original event, then it remains collinear in the looped event. And if it is

gluon 4 (emitted after all the others) that is looped, only the quark momentum is rescaled

and its direction barely changes, so that angles between the quark and the other gluons

stays the same.

In the case where the Z decays into 2 leptons, one applies the following procedure to

each of the leptons:

1. Perform a longitudinal boost of the Z boson respectively in the original event and

the looped event such that it has 0 rapidity in each case. Call the momenta obtained

pZ,0 = (E0, ~pt,0, 0) and pZ,1 = (E1, ~pt,1, 0) respectively.

2. Perform a longitudinal boost of the lepton from the original event into the frame

where the initial Z has 0 rapidity.

3. Define a purely transverse vector k such that pZ,0 is transformed to pZ,1 if it is boosted

into k’s rest frame:

k =

(

E1 + E0,
2

1 + C
(~pt,1 − ~pt,0), 0

)

, (A.6)

with

C =
(~pt,1 − ~pt,0)

2

(E1 + E0)2
. (A.7)

4. Boost the lepton’s momentum into k’s rest frame.

5. Apply to the lepton the longitudinal boost that brings pZ,1 to its true rapidity in the

looped event.

We are aware of the cumbersome nature of these procedures. A simplification of them

that retained the relevant collinear-safety properties would certainly be of interest.
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B The LoopSim method and incoming partons

Without going into a full proof, we shall here illustrate why the LoopSim method is sensible

even in the presence of incoming hadrons, by considering what happens at n̄LO. We start

with a LO cross section for a process producing n hard objects

σLO
n =

∫

dxadxb dΦn
dσ̂ij→n(xapa, xbpb)

dΦn
fi/a(xa, µ

2
f)fj/b(xb, µ

2
f)C(p1, . . . , pn) . (B.1)

For compactness of notation, we have dropped the µr dependence in the differential tree-

level partonic cross section dσ̂ij→n/dΦn. We have also not yet specified our choice for the

factorisation scale µf. We assume that dσ̂ij→n/dΦn contains the necessary constraints to

relate the incoming partonic momenta to the outgoing momenta. We further integrate

over the phase-space dxadxbdΦn, and include a function C(p1, . . . , pn), which is 1 if the

momenta pass our cuts and 0 otherwise.

We now imagine that there is some transverse-momentum scale Q0 below which no

radiation is emitted. To O(αs), the PDFs fi/a(xa, µ
2
f) can be written in terms of PDFs at

scale Q0:

fi/a(xa, µ
2
f) = fi/a(xa, Q

2
0) +

αs

2π

∫ µ2
f

Q2
0

dk2
t

k2
t

∫

dz

z
Pik(z)fk/a(x/z,Q

2
0) , (B.2)

where we sum implicitly over repeated indices. We also define an unregularised splitting

function pik(z) such that Pik(z) = pik(z)− δ(1−z)
∫

dz′p̄ik(z
′), with p̄ik(z

′) embodying the

virtual parts of the splitting function (it is zero for i 6= k).

Next, we write the LO cross section in terms of a PDF for proton a that has been

evaluated at scale Q0:

σLO
n =

∫

dxadxb dΦn
dσ̂ij→n(xapa, xbpb)

dΦn
fj/b(xb, µ

2
f)C(p1, . . . , pn)

×
[

fi/a(xa, Q
2
0) +

αs

2π

∫ µ2
f

Q2
0

dk2
t

k2
t

dz

(

pik(z)

z
fk/a(xa/z,Q

2
0) − p̄ik(z)fi/a(xa, Q

2
0)

)

]

. (B.3)

Note that the first term in round brackets on the second line corresponds to real emission

of a parton. However that parton is not taken into account in the C(p1, . . . , pn) factor.

Next we examine the structure of the n̄LO contribution,

σn̄LO
n = σLO

n +

∫

dxadxb dΦn+1
dσ̂ij→n+1(xapa, xbpb)

dΦn+1
fi/a(xa, µ

2
f)fj/b(xb, µ

2
f)

×
[

C(p1, . . . , pn+1) − C(pLS
1 , . . . , pLS

n )
]

, (B.4)

where the pLS
1 . . . pLS

n represent the momenta when the LoopSim procedure has looped

pn+1. In the limit in which pn+1 is collinear to incoming parton i, with momentum pn+1 ≃
(1 − z)xapa, the n+1-parton differential cross section and phase-space simplify

dxadΦn+1
dσ̂ij→n+1(xapa, xbpb)

dΦn+1
= dx′adΦn

dσ̂kj→n(x′apa, xbpb)

dΦn
· αs

2π

dz

z

dk2
t,n+1

k2
t,n+1

pki(z) , (B.5)
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where x′a = zxa. By “collinear” we will mean kt,n+1 ≪ Q where Q is the momentum

transfer in the hard process. In this limit we also have that pLS
l ≃ pl (for l ≤ n). So, still

working within the collinear limit, we can now rewrite eq. (B.4) as

σn̄LO
n ≃ σLO

n +

∫

dx′adxb dΦn
dσ̂kj→n(x′apa, xbpb)

dΦn
fj/b(xb, µ

2
f)

× αs

2π

∫ Q2

Q2
0

dk2
t,n+1

k2
t,n+1

dz

z
pki(z) [C(p1, . . . , pn+1) − C(p1, . . . , pn)] fi/a(x

′
a/z, µ

2
f) . (B.6)

Next, we exchange i↔ k, replace x′a → xa and change the scale µ2
f in fi/a(x

′
a/z, µ

2
f) to be

Q2
0, which is allowed because it corresponds to an O

(

α2
s

)

change (while here we consider

only O(αs)):

σn̄LO
n ≃ σLO

n +

∫

dxadxb dΦn
dσ̂ij→n(xapa, xbpb)

dΦn
fj/b(xb, µ

2
f)

× αs

2π

∫ Q2

Q2
0

dk2
t,n+1

k2
t,n+1

dz

z
pik(z) [C(p1, . . . , pn+1) − C(p1, . . . , pn)] fi/a(xa/z,Q

2
0) . (B.7)

Note now that if we take µ2
f ∼ Q2 in eq. (B.3), then the second term in square brackets in

eq. (B.7) cancels the first term in round brackets in the second line of eq. (B.3). In other

words for initial-state radiation, the action of LoopSim is not so much to provide virtual cor-

rections as to cancel the real-emission terms already included implicitly through the PDFs

in the leading order cross section. In contrast, the true virtual terms are already included

through the PDFs themselves, i.e. through the second term in round brackets in eq. (B.3).

As an example, consider pp→ Z. At n̄LO we will have events such as gq → Zq, where

the outgoing quark comes from collinear initial-state splitting g → qq̄, with an underlying

hard subprocess q̄q → Z. From these events LoopSim will generate a configuration in which

the outgoing quark is “looped”. This will come in with a PDF weight that is the product

of a gluon distribution and a quark distribution, so it appears that we have a (negative)

gq → Z contribution, which would be unphysical. However in the LO cross section with

a factorisation scale µf ∼ Q, when we write q̄q → Z, part of the q̄ PDF comes from

g → q̄q splitting. If we were just to add the real gq → Zq diagram to the LO cross section

alone, then in the collinear limit we would be double counting the part already included

in the PDF. With the negative “gq → Z” LoopSim contribution, what happens is that we

simply remove the q̄ PDF component, generated from g → q̄q splitting, that was implicitly

included at LO with an incorrect final state (i.e. lacking an outgoing quark), since we are

now putting it in with the correct final state through the real gq → Zq diagram.

Note that we have not yet worked out the full extension of this discussion to higher

orders. The details would depend on the precise higher orders that we have in mind,

for example n̄n̄LO versus n̄NLO. However, regardless of these details, the fundamentally

unitary nature of the LoopSim procedure is important in ensuring that the simulated

“loops” simply bring about an overall consistent set of final states while maintaining the

total cross section as calculated with a sensible factorisation scale choice.
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Figure 14. Schematic depiction of the matrix elements for two gluons emitted (or virtual) from

a qq̄ dipole: (a) gluons 1 and 2 real; (b) gluon 1 real and 2 virtual; (c) gluon 1 virtual and 2 real;

(d) gluons 1 and 2 virtual. In each case, when needed, we use the decomposition into W1 and W2

pieces to separate what can be seen as the emission of gluon 2 from gluon 1, and what can be seen

as the emission of gluon 2 directly from qq̄.

C Secondary emitters in LoopSim

In section 2.1.2 we discussed the special treatment needed for “secondary emitters”, i.e.

non-Born particles that have emitted something. In our procedure, secondary emitters

do not get looped: when particle j makes a loop over i, this is justified by the collinear

enhancement of the matrix element due to i and j being close in angle. But the emission

of the same j from the configuration where i is virtual does not have such a collinear

enhancement, so one must not take it into account. Another way to understand it is to

consider the example of 2-gluon emission from a qq̄ dipole. The squared matrix element for

the emission of 2 real energy-ordered (E1 ≫ E2) gluons, g1, g2, can be expressed as [57–59]

M(k1, k2) = (4παs)
2(C2

FW1 +CFCAW2) , (C.1)

with

W1 = 4
(pq.pq̄)

(pq.k1)(k1.pq̄)

(pq.pq̄)

(pq.k2)(k2.pq̄)
, (C.2a)

W2 = 2
(pq.pq̄)

(pq.k1)(k1.pq̄)

(

(pq.k1)

(pq.k2)(k2.k1)
+

(pq̄.k1)

(pq̄.k2)(k2.k1)
− (pq.pq̄)

(pq.k2)(k2.pq̄)

)

. (C.2b)

Since the W1 term diverges when g2 is collinear to q or q̄ (unlike the W2 term), it becomes

relevant when g2 is considered to have been emitted from q or q̄ independently of g1. The

W2 term diverges when g2 is collinear to g1 (unlike W1), so it becomes relevant when g2 is

considered to have been emitted from g1. This is depicted in figure 14, which also shows

the virtual corrections (cf. [59]). One notices that the W2 term only appears when g1 is

real. The diagrams where g1 is virtual are taken into account when g2 is emitted from q

or q̄. Therefore, g1 cannot become virtual when g2 makes a loop over it.
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