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1. Introduction

The low dimensional fermionic models as toy models provide an excellent playground to try

and develop new ideas and methods in quantum field theory [1]. These models have only

indirect physical meaning but they are much simpler than their 4-dimensional counterparts,

and they usually show important characteristics of the original ones. For example the 2-

dimensional quantum electrodynamics (QED2) proved to be a good toy model for treating

the soft mechanism of the quark confinement [2, 3]. The confining properties, the large-Nc

expansion [4] or the baryon structure [5, 6] of QCD can also be studied in the 2-dimensional

version of the model and then one can get even analytical results for the non-perturbative

domain. One usually takes the bosonized version of these models which are local self-

interacting scalar theories, and can be investigated in an easier way [7].

The phase structure of the QED2 with many flavors was mapped out from its bosonized

version and it was shown that it exhibits only a single phase [8, 9] as opposed to the

single-flavor QED2 (which is often referred to as the massive Schwinger model) [7, 3],

which possesses a symmetric strong coupling (e ≫ me) phase and the weak coupling

(e ≪ me) phase with spontaneously broken reflection symmetry separated by the critical

value (me/e)c ∼ 0.31 as was shown by density matrix renormalization group (RG) technique

[10] or by continuous RG method [11, 9].

The situation is a bit different in the case of the 2-dimensional quantum chromody-

namics (QCD2). The scalar model equivalent of the single flavor QCD2 can be easily

obtained, but the bosonization failed to treat the multi-flavor model. The solution of this
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problem was the introduction of the non-abelian bosonization [12]. However a single-flavor

but multi-color investigation is possible with the usual abelian bosonization technique.

It is argued [13] that the multi-color QCD2 possesses two phases, a weak coupling or

quark phase, and a strong coupling or Bose phase. Elsewhere it is also argued [14] that

the model has a single phase. This open question should be investigated in the low energy

limit.

The bosonized version of the multi-flavor QED2 contains sine-Gordon (SG) type pe-

riodic self-interaction terms. The scalar fields are coupled by a mass matrix giving a

multi-component or layered sine-Gordon (LSG) model which is used to describe the vor-

tex dynamics of magnetically coupled layered superconductors [15], where the number of

flavors in QED2 equals the number of layers of the condensed matter system [9]. The Bose

form of the multi-color QCD2 also contains SG type interactions, a mass matrix and a

mixed term. The latter can be associated to the non-periodic term in the potential there-

fore it can be Taylor expanded giving further contributions to the mass matrix. The higher

order terms are negligible since they do not modify the phase structure of the model. Then

one can conclude that the difference between the bosonized versions of QED2 and QCD2,

respectively stems from the different mass matrices. For the 2-flavors (Nf = 2) QED2 and

the 2-colors (Nc = 2) QCD2 the mass matrices coincide, implying that these models are

equivalent. It is quite surprising since the fermionic models are different. The difference

between the bosonized models appears when Nf > 2 and Nc > 2. We note that the low

energy multi-flavor QCD2 with unequal masses can also be bosonized giving a so called

generalized SG model [6, 16] but its investigation is out of the scope of this paper.

The phase transition of these models was obtained from the microscopic theory so far,

which is formulated in the high energy/ultraviolet (UV) region. The low energy/infrared

(IR) physics can be obtained by integrating out the quantum fluctuations one by one. Then

one can get a low energy theory describing the quantum system at energy scales where

the measurements are usually performed. The quantum fluctuations can be eliminated

systematically by using the renormalization group (RG) method. The original fermionic

models contain strong couplings in the high energy UV regime which disables one to perform

a perturbative renormalization. The evolution is usually started from a perturbative region

where the theory is almost interaction free. We also note that the RG equations should

preserve the gauge symmetry [17]. However the bosonized version of the toy models, which

are simple scalar models can be easily treated by the functional RG method. The low

energy IR physics of the 2-dimensional one-component scalar field theories which contain

periodic self-interaction term are well understood [9, 11, 18, 19].

Our goal in this article is to compare the phase structure of the multi-flavor QED2

and the multi-color QCD2 by using functional RG method. The bosonization is applicable

for the original fermionic models at a certain parameter choice β2 = 4π, which appears in

the argument of the sine function. Therefore the value of the parameter β has to be kept

fixed during the RG evolution. It implies that the investigation which is confined to the

local potential approximation (LPA) where β does not evolve may give reliable evolutions.

Although the Wilsonian renormalization procedure is very powerful in LPA [20], we choose

the effective average action RG method [21, 22, 23, 19] to obtain the evolution of the models
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due to its more flexible usage. The RG evolution provides us the scale dependence of the

couplings in the scalar model from which the scaling of the original fermionic couplings can

be obtained according to the bosonization rules.

The paper is organized as follows. In Sect. 2 we introduce the bosonized versions of

the investigated fermionic models and relate them to layered sine-Gordon (LSG) models.

The evolution of the couplings is determined in Sect. 3. Finally, in Sect. 4 the conclusions

are drawn up.

2. Bosonized models

2.1 Multi-flavor QED2

The Lagrangian of the multi-flavor QED2 is

L = −1

4
FµνF

µν +

Nf
∑

i=1

ψ̄iγ
µ(∂µ − ieAµ)ψi −me

Nf
∑

i=1

ψ̄iψi, (2.1)

with Nf Dirac fields and identical fermionic charge e and mass me, furthermore F01 =

∂0A1 − ∂1A0. One can transform the fermionic field variables ψ̄i, ψi into bosonic ones φj

by the bosonization rules [24, 25, 2]

: ψ̄iψi : → −cmee√
π

cos(2
√
πφi),

: ψ̄iγ5ψi : → −cmee√
π

sin(2
√
πφi),

: ψ̄iγµψi : → 1√
π
εµν∂

νφi,

: ψ̄ii∂/ψi : → 1

2
Nme(∂µφi)

2, (2.2)

where Nme means normal ordering with respect to the fermion massme and c = exp(γ)/2π,

with the Euler constant γ = 0.5774. The Hamiltonian of the system in Coulomb gauge is

given by

H =

Nf
∑

i=1

∫

x
ψ̄i(x)(iγ1∂1 +me)ψi(x) −

e2

4

∫

x,y
j0,x|x− y|j0,y, (2.3)

with
∫

x =
∫ T
0 dx0

∫ L
−L dx

1 and

j0,x =:

Nf
∑

i=1

ψ̄i(x)γ0ψi(x) :=
1√
π
∂1

Nf
∑

i=1

φi(x). (2.4)

The resulting bosonized form of the Hamiltonian is

H = Nme

∫

x

[

1

2

Nf
∑

i=1

Π2
i (x) +

1

2

Nf
∑

i=1

(∂1φi(x))
2 +

e2

2π





Nf
∑

i=1

φi(x)





2

− cm2
e

Nf
∑

i=1

cos
(

2
√
πφi(x)

)

]

, (2.5)
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where Πi(x) denotes the momentum variable canonically conjugated to φi(x). In or-

der to complete the bosonization, one has to use normal-ordering with respect to the

scalar mass µ2 = e2/π which modifies the coupling of the periodic term, Nme cos(bφ) =

(µ/me)
b2/4πNµ cos(bφ). Therefore, the Nf = 1 flavor bosonized QED2 reads as

HNf=1 = Nµ

∫

x

[

1

2
Π2(x) +

1

2
(∂1φ(x))2 +

1

2
µ2φ(x)2 − cmeµ cos

(

2
√
πφ(x)

)

]

, (2.6)

which can be generalized for Nf > 1 flavor using its rotated form where the mass matrix

is diagonal. Let us note that the scalar mass term in (2.5) can be rewritten in terms of the

mass matrix M2
QED defined via

1

2
ΦM2

QEDΦ =
1

2

e2

π





Nf
∑

n=1

anφn





2

, (2.7)

where Φ = (φ1, φ2, ..., φNf
) and the couplings an are free real parameters of the model. In

order to reproduce the mass term of (2.5) one has to restrict the choice to be an = 1 for all

n. However, based on symmetry considerations any choice with a2
n = 1 for all n = 1, . . . , Nf

should reproduce exactly the same phase structure since the number of zero and non-zero

eigenvalues of the mass-matrix remains unchanged which was found to be decisive with

respect to the phase structure of the Nf -component model [9]. It is not a surprise since

in path-integral quantization a change of sign of any of the field components represents an

allowed transformation of the integration variable, that in turn induces a single change of

sign in the mass term and leaves the other terms of the action invariant. As a consequence,

an = (−1)n+1 is also a suitable choice which will be used in the mass term of QED2 in this

paper and leads to the mass matrix

(M2
QED)a,b = (−1)a+bG, a, b = 1, 2, . . . , Nf (2.8)

with G = e2/π. The QED-type mass matrix (2.8) exhibits a single non-vanishing mass-

eigenvalue, M2
Nf

= NfG and Nf − 1 vanishing eigenvalues.

2.2 Multi-color QCD2

The Hamiltonian of the QCD2 with a single flavor Nf = 1 is

H = g2
Nc
∑

a,b=1

Eb 2
a +

Nc
∑

a,b=1

ψ̄aγ1(iδ
b
a∂1 −Ab

a)ψb +mg

Nc
∑

a=1

ψ̄aψa (2.9)

in the gauge

A0 = 0, Aa
b = 0 for a = b, Ea

b = 0 for a 6= b. (2.10)

Using the Gauss law the bosonized Hamiltonian with one flavor becomes

H =
∑

a

[

1

2

(

Π2
a + (∂1φa)

2
)

− cmgµ

π
Nµ cos(2

√
πφa)

]

+
g2

8πNc

∑

a,b

(φa − φb)
2 +

2c2µ2

π3/2

∑

a,b

sin(2
√
π(φa − φb))

φa − φb
, (2.11)
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where the scale µ should satisfy µ = c′g, with c′ a constant, in order to take the interaction

energy proportional to g2 [13].

We determined the field configuration for the ground state of the model numerically.

The static field configuration minimizing the energy was searched for by means of the con-

jugate gradient method as in [3]. The results showed that the constant field configuration

with all components φa equal to the same constant minimizes the energy, for the cases

Nc = 2, 3. The same trivial ground state appears when we take the polynomial piece of

the potential alone. Therefore, it seems to be justified to Taylor-expand the last potential

term in the Hamiltonian at φa−φb = 0 and keep only the quadratic term of the expansion,

so far one is interested in the behavior of the system in or close to the ground state. Then

one finds

H =
∑

a

[

1

2

(

Π2
a + (∂1φa)

2
)

− cc′mgg

π
Nµ cos(2

√
πφa) +

1

2

∑

b

g2cg(φa − φb)
2

]

(2.12)

with cg = 1/4πNc + (4cc′)2/3. Let us note, that similarly to the bosonized QED2, the

scalar mass term in (2.12) can be rewritten in terms of the mass matrix M2
QCD defined via

1

2
ΦM2

QCDΦ =
1

2
g2cg

∑

a,b

(φa − φb)
2, (2.13)

where Φ = (φ1, φ2, ..., φNc) and the summation runs from a, b = 1 to Nc. Then one gets

(M2
QCD)a,b = (N − 1)Jδa,b − J a, b = 1, 2, . . . , Nc (2.14)

with J = 2g2cg. The QCD-type mass matrix (2.14) has a single zero eigenvalue and Nc−1

identical, non-vanishing eigenvalues, M2
Nc

= NcJ .

2.3 Relation to layered sine-Gordon models

Both models, the bosonized multi-flavor QED2 and the multi-color QCD2 can be considered

as the specific forms of a generalized LSG model [9] which consists of two-dimensional

periodic scalar fields coupled by an appropriate mass matrix whose bare Euclidean action

is written as

S =

∫

x

[

1

2
(∂µΦ)2 +

1

2
ΦM2Φ + y

N
∑

n=1

cos(βφn)

]

(2.15)

with the O(N) multiplet Φ = (φ1, . . . , φN ). For the specific choice β2 = 4π with the

mass matrices (2.8) and (2.14) one one recovers the bosonized version of the multi-flavor

QED2 for N = Nf and that of the multi-color QCD2 for N = Nc, respectively. The

amplitude y of the periodic piece of the potential is identical for all component fields, and

it is proportional to the fermion mass (y ∼ m), the exact relation can be determined by

using normal-ordering w.r.t. the boson mass. We note that for N = 2 the mass matrices

(2.8) and (2.14) coincide, consequently, the Bose forms of the two-flavor QED2 and the

two-color QCD2 are the same.

For later use it is worthwhile mentioning that after an appropriate O(N) rotation

diagonalizing the mass matrix, the LSG model with the QED-type mass matrix (2.8)
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exhibits a single massive field and N − 1 massless ones. On the contrary, the LSG model

with the QCD-type mass matrix (2.14) shows up a single massless field and N − 1 massive

fields of identical masses after such an O(N) rotation.

3. RG approach for multi-component models

The systematic removal of the quantum fluctuations can be performed by the evolution

equation for the effective action [21, 22, 23, 19]

k∂kΓk =
1

2
Tr

k∂kRk

Γ
(2)
k +Rk

, (3.1)

where Γ
(2)
k refers to the second functional derivative matrix of the effective action and the

trace Tr stands for the integration over all momenta. The scale k starts from a large UV

value Λ (which is typically set to ∞ during the calculations) and goes to zero. Rk plays

the role of the IR regulator function. For the suppression of the high-frequency modes one

can choose the power-law type regulator

Rk = p2

(

k2

p2

)b

(3.2)

with the parameter b ≥ 1. Here we choose b = 1, which corresponds to the Callan-

Symanzik RG scheme [23]. It is easy to see, that in d = 2 the chosen CS scheme is free of

UV divergences and ultralocal, furthermore the evolution equations take a rather simple

form. We note that in d = 2 the choices b = 1 and b = ∞ coincide [26, 27] in the LPA.

The latter case corresponds to the sharp cutoff limit, which makes the functional form of

the CS and the sharp cutoff (or Wegner-Houghton type) evolution equations similar. The

effective action is expanded in powers of the derivative of the field,

Γk[Φ] =

∫

x

[

Vk[Φ] + Zk[Φ](∂µΦ)2 + O(∂4
µ)

]

, (3.3)

with Vk[Φ] the potential and Zk[Φ] the wave-function renormalization. The latter provides

evolution to the parameter β, even in the case of field-independent wave-function renor-

malization Zk[Φ] ≡ zk, where β2 = 1/z [19]. The bosonization gives a constraint to the

parameter β2 = 4π. The running of Zk[Φ] influences the evolution significantly in the

vicinity of the Coleman point at β2 = 8π [19, 28] but gives slight modifications around

β2 = 4π [11], therefore it is not supposed to affect the phase structure of the model. Thus

we do not go beyond the LPA, and set Zk[Φ] = 1. One can derive the evolution equation

(2 + k ∂k) Ṽk(Φ) = − 1

4π
ln

[

det
(

δij + Ṽ ij
k (Φ)

)]

, (3.4)

with Ṽ ij
k = ∂φi

∂φj
Ṽk for the dimensionless potential Ṽk = k−2Vk, where Φ stands for

homogeneous field configurations. We make the general ansatz

Ṽk(Φ) =
1

2
ΦM̃2(k)Φ + ỹ(k)

N
∑

n=1

cos(β φn) (3.5)
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for the dimensionless potential of the LSG type models under discussion, where ỹ(k) =

k−2y(k). Inserting the ansatz (3.5) into Eq. (3.4), the right-hand side becomes periodic,

while the left-hand side contains both periodic and non-periodic parts [29, 30, 31, 9]. The

non-periodic part contains only mass terms, so that we obtain a RG flow equation for the

dimensionless mass matrix

(2 + k∂k)M̃2(k) = 0, (3.6)

giving the scaling

J̃k = k−2J, and G̃k = k−2G, (3.7)

which corresponds to the scaling according to the canonical dimensions, since in the LPA

the anomalous dimension is zero. One can conclude that the dimensionful couplings J , G

remain constant during the blocking.

The RG flow avoids the singularities if we handle the evolution without any truncations

[21]. We note however that one should usually use some approximations or expansions in

the RG equations in order to solve them. The bosonized QCD2 contains a single Fourier

mode, however the RG equations generate the higher harmonics. Restricting ourselves

to follow the evolution of the fundamental mode only may induce a strong truncation,

implying that we should face the problem of poles of the evolution equation in Eq. (3.4).

The proper choice of the IR regulator function may drive the evolution to reach the pole

only in the k → 0 limit. This seems to be true even in the case of the sharp cutoff scheme,

where one can draw up the quantum cenzorship conjecture [32, 33]. However the poles

– unless they appear as artifacts of the approximations and truncations, – have a great

physical importance, because their existence can signal the spontaneously broken phase of

the model [21, 34]. In the symmetry broken phase of a single component scalar field the

dynamical Maxwell cut makes the effective potential superuniversal, namely

Ṽk=0[Φ] = −1

2
Φ2. (3.8)

3.1 UV scaling

The correct UV scaling can be obtained if we improve the results of the linearized approx-

imation by taking into account corrections of the order O(J̃) for the QCD2 type and those

of O(G̃) for the QED2 type case [29, 15, 9, 30]. This is achieved by linearizing the RG

equation in the periodic piece of the blocked potential,

(2 + k∂k)Ṽk = − 1

4π

F1(Ṽk)

C
+ O(Ṽ 2

k ), (3.9)

where C and F1(Ũk) stand for the constant and linear pieces of the determinant

det[δij + Ṽ ij
k ] = C + F1(Ṽk) + O(Ṽ 2

k ). (3.10)

The UV scaling law for the QCD2 type LSG model for N colors is

ỹ(k) = ỹ(Λ)

(

k

Λ

)
β2

N4π
−2 (

k2 +NJ

Λ2 +NJ

)

(N−1)β2

N8π

(3.11)
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with the initial value ỹ(Λ) at the UV cutoff k = Λ. From the extrapolation of the UV

scaling law (3.11) towards the IR scales we can read off the critical value β2
c (N) = 8πN .

The coupling ỹ is irrelevant for β2 > β2
c (N) and relevant for β2 < β2

c (N). The critical

frequency and the corresponding critical temperature

T
(N)
QCD =

2π

β2
c (N)

= T ⋆
KTB

1

N
(3.12)

separating the two phases of the model coincide with the general expressions obtained

previously for the rotated LSG model in Refs. [29, 31, 30, 9].

Similar consideration can be done for the QED2 type LSG model [29, 15, 9, 8] and the

solution of Eq. (3.9) for the couplings in case of N flavors is given as

ỹ(k) = ỹ(Λ)

(

k

Λ

)
(N−1)β2

N4π
−2 (

k2 +NG

Λ2 +NG

)

β2

N8π

. (3.13)

The critical frequency and the corresponding critical temperature which separates the two

phases of the model can be read off directly,

β2
c (N) =

8πN

N − 1
, → T

(N)
QED =

2π

β2
c (N)

= T ⋆
KTB

N − 1

N
. (3.14)

For N = 1 layer the LSG model with magnetic type coupling reduces to the massive 2D-

SG model where the periodicity is broken explicitly. Therefore, for sufficiently small bare

coupling ỹ(Λ), there exists only a single phase [29, 30, 15, 9] in the N = 1 layer model,

i.e., the coupling ỹ(k) is relevant (increasing) in the IR limit (k → 0) irrespectively of β2.

For N → ∞ the magnetically coupled LSG behaves like a massless 2D-SG model with the

critical frequency β2
c = 8π [8]. Both the dependencies in Eqs. (3.12) and (3.14) of the critical

frequencies βc on the number of layers N indicate that QED2 and QCD2 with any number of

flavors and colors, respectively belong to the symmetry broken phase of the corresponding

LSG model (β2 = 4π < β2
c (N)), see also Fig. 1. We shall show below that the IR scaling

laws confirm this statement. The UV treatment suggests, that the phase structure of

the LSG type models and the SG model is quite similar, since there is a Coleman fixed

point with the critical parameter βc separating the symmetric (β > βc) and the symmetry

broken (β < βc) phases. The Coleman point appears in the UV level, namely the couplings

start to scale irrelevantly (relevantly) in the (broken) symmetric phases respectively. The

inclusion of the higher harmonics modifies this picture by introducing further critical β

values [33], and may give further fixed points. However the IR behavior of the SG model

results in a single Coleman point, suggesting the IR nature of the fixed point.

Occurring a pole during the RG evolution may give another signal that the bosonized

multi-flavor QED2 and multi-color QCD2 correspond to LSG models in the symmetry

broken phase. The following search for such a pole relies on the extrapolation of the

UV scaling laws again. Nevertheless, the appearance of a pole would inform one on the

superuniversality of the effective potential settling it as (3.8) with the consequence that

the original multi-color QCD2 exhibits a single phase.
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1.0

2.0

3.0

4.0

c

2
(N

)/
(8

)

0 1 2 3 4 5 6

N

Figure 1: The critical frequency β2

c
(N) versus the layer-number N is shown for LSG models with

QED2-type (dashed line) and QCD2-type (solid line) interlayer couplings, respectively. The critical

frequencies lie outside of the shaded area, irrespectively of N .

As stated earlier, QED2 for Nf = 2 and QCD2 for Nc = 2 coincide. It was shown

[8] that these models have a single phase. The situation changes for Nf = 3 and Nc = 3,

respectively. Then the RG equation in Eq. (3.4) for 3 layers has the form

(2 + k∂k)Ṽk = − 1

4π
log

[

(1 + Ṽ 11
k )(1 + Ṽ 22

k )(1 + Ṽ 33
k ) + Ṽ 12

k Ṽ 23
k Ṽ 31

k + Ṽ 13
k Ṽ 21

k Ṽ 32
k

−Ṽ 13
k (1 + Ṽ 22

k )Ṽ 31
k − Ṽ 12

k Ṽ 21
k (1 + Ṽ 33

k ) − (1 + Ṽ 11
k )Ṽ 23

k Ṽ 32
k

]

. (3.15)

For the 3-flavor QED2 the potential for the corresponding scalar model is

Ṽk =
1

2
G̃(φ1 − φ2 + φ3)

2 + ỹ
[

cos(βφ1) + cos(βφ2) + cos(βφ3)
]

(3.16)

with G̃ > 0. Inserting this ansatz into the argument of the logarithm in the right hand

side of the RG equation (3.15) one can see, that a pole for φ1 = φ2 = φ3 = 0 may appear

when

(1 − β2ỹ)2(1 + 3G̃− β2ỹ) = 0. (3.17)

Due to the factor in the first bracket in the left hand side, the relevant scaling of the

dimensionless coupling ỹ in Eq. (3.13) drives the flow to a pole independently of the UV

initial parameters of the model. This simple treatment suggests that the model is in its

symmetry broken phase, which implies that the 3-flavor QED2 has a single phase. Thorough

calculations showed the same result [9, 8].

The form of the potential for the 3-color QCD2 is

Ṽk =
1

2
J̃ [(φ1 − φ2)

2 + (φ2 − φ3)
2 + (φ3 − φ1)

2] + ỹ[cos(βφ1) + cos(βφ2) + cos(βφ3)] (3.18)
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with J̃ > 0. The argument of the logarithm in Eq. (3.15) is now

(1 − β2ỹ)(1 + 3J̃ − β2ỹ)2 = 0, (3.19)

which also gives a pole due to the first bracket in the left hand side if we consider the

relevant scaling of the coupling ỹ according to Eq. (3.11). Similarly to the result obtained

for the 3-flavor QED2 the model seems to be in the symmetry broken phase giving again

a single phase for the original 3-color QCD2. Below we shall show that our expectation of

a single phase for 3-color QCD2 is justified by the IR scaling laws.

3.2 IR scaling

A more reliable information on the phase structure of the multi-color QCD2 should be

deduced from the IR scaling laws of the corresponding LSG type model. The proper

treatment of the problem requires to find the solution of the rather complicated partial

differential equation (3.4). Instead of treating that task in its full complexity, we shall

invent the following strategy. First we perform an O(N) rotation R which diagonalizes the

symmetric mass matrix by the rotated field variables αi = Rijφj . Due to the particular

structure of the mass matrix M2
QCD, it exhibits a single zero eigenvalue and N−1 identical

eigenvalues NJ̃ . Further on, we assume that the mass gap suppresses large amplitude

quantum fluctuations of the massive field components and, therefore the potential can

be Taylor-expanded in the massive field components at their vanishing value. Then the

massive fields appear in the lowest order as free fields and decouple from the massless

field component and can easily be integrated out. In this manner the problem becomes

amenable for the numerical treatment. Such an approach has been successfully applied to

LSG models in [31].

In particular, the rotation for N = 3 is performed with the matrix

R =









1√
3

1√
3

1√
3

− 1√
2

0 1√
2

1√
6

−
√

2√
3

1√
6









(3.20)

and the effective action of the rotated model takes the form

Γrot =

∫

x

[

1

2
(∂µα1)

2 +
1

2
(∂µα2)

2 +
1

2
(∂µα3)

2 +
3

2
J̃(α2

2 + α2
3) + Vrot

]

, (3.21)

with

Vrot = 2ỹ cos

(

β
α1√

3

)

cos

(

β
α2√

2

)

cos

(

β
α3√

6

)

− 2ỹ sin

(

β
α1√

3

)

cos

(

β
α2√

2

)

sin

(

β
α3√

6

)

+ỹ cos

(

β
α1√

3

)

cos

(

β
α2√

6

)2

− ỹ cos

(

β
α1√

3

)

sin

(

β
α2√

6

)2

+ỹ sin

(

β
α1√

3

)

cos

(

β
α2√

6

)

sin

(

β
α2√

6

)

. (3.22)
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Now we keep the lowest-order term of the Taylor-expansion of the potential in the massive

field components at α2 = α3 = 0 like in [31] for the LSG model. Then the effective action

reduces to

Γred
rot =

∫

x

[

1

2
(∂µα1)

2 + 3ỹ cos

(

β
α1√

3

)]

. (3.23)

The massive components decouple and describe free fields, and by integrating out the N−1

massive modes as described in Refs. [31, 9] one obtains that the IR behavior of the model

is completely determined by the remaining massless component field α1 which describes a

simple SG model.

The advantage of the rotation reveals itself in the reduction of the task of the low-energy

QCD2 to the determination of the IR behavior of the SG model (3.23). The functional RG

method showed [35, 18, 19] that this SG model has two phases depending on the value of

its parameter β2/3. As we have shown previously in Sect. 3.1 , the multi-color QCD2 gives

values of the parameter β2 = 4π < β2
c (N) for arbitrary number N > 1 of colors, which

means that the corresponding SG model is in the symmetry broken phase. Earlier calcula-

tions based on Fourier expansion [35, 36, 18, 26] showed that in the symmetry broken phase

the effective potential is superuniversal with the parabolic shape (3.8). It happened numer-

ically that the Fourier-expansion drove the evolution towards the pole at a non-vanishing

scale. Approaching it a parabolic prepotential appeared but the Fourier-expansion became

unreliable at the same time, so that the further evolution was treated at tree level [37]

which always gave parabolic effective potential (3.8). More precise calculations, avoiding

any expansion of the potential [33] now suggest, however, that there is a non-trivial IR

attractive fixed point for low values of β2 giving a superuniversal effective potential which

deviates a little from Eq. (3.8), and the latter form is reached only in the limit β2 → 0.

The flow of the coupling ỹ is determined by a computer algebraic program [27], which

solves the RG equation directly, without using any ansatz for the potential. It finds the

fundamental mode ỹ(k) by Fourier-analyzing the numerically determined potential at any

scale k afterwards. The polynomial suppression scheme we use here needs higher numerical

accuracy as compared to the exponential scheme [21]. We set a high numerical working

precision in order to handle the numerical ambiguities properly as was pointed in [33]. The

IR flow of the coupling can be seen in Fig. 2. The figure clearly shows that the IR value of

the dimensionless coupling ỹ(0) is independent of its initial, microscopic value. This implies

that the IR effective potential is also independent of the microscopic parameters, i.e. it

is superuniversal. According to the inset of Fig. 2 the effective potential approaches the

parabolic shape characterized by 1 + Ṽ ′′(Φ) = 0 in the limit k → 0, but our high-precision

calculation also shows that it does not reach the parabola, in accordance with the findings

in [33].

The dimensionful parameter J = g2cg is constant, therefore the fermionic coupling g

remains unchanged during the evolution. It gives non-vanishing coupling in the IR limit

of the 3-color QCD2. The IR behavior of the model shows that the dimensionful coupling

y goes to zero for k → 0 driving the quark mass mg to zero. Therefore this scalar model

is a free massive theory too as was the 3-flavor QED2 [8], and the 3-color QCD2 is an

interacting theory of massless two-dimensional quarks.

– 11 –
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Figure 2: The IR scaling of the dimensionless coupling ỹ for several initial values. The inset

demonstrates the convexity of the effective action during the evolution as the scale k decreases,

k/Λ = 10−a.

3.3 Large N case

The techniques used in the previous subsections can be easily generalized to the case of

arbitrary N . The naive expectation that multi-color QCD2 is in the symmetry broken

phase stems from the appearance of poles if we consider the argument of the logarithm in

the right hand side in Eq. (3.19) for N colors,

(1 − β2ỹ)(1 +NJ̃ − β2ỹ)N−1 = 0 (3.24)

in the framework of the extrapolation of the UV scaling laws. Similarly to the 3-color

case, the first factor can change sign due to the relevant UV scaling of the coupling ỹ,

signaling the appearance of the pole and the symmetry broken phase. However, a more

reliable conclusion can be drawn again if one considers the IR scaling for N -colors. In

order to diagonalize the mass matrix, one performs the appropriate O(N) rotation. Taylor-

expanding the potential in the new massive field variables αi, i = 2 . . . N at their vanishing

values and keeping the quadratic terms only, these become massive free fields. Integrating

them out one can reduce the effective action to that of the single massless field α1,

Γred
rot =

∫

x

[

1

2
(∂µα1)

2 +Nỹ cos

(

β
α1√
N

)]

. (3.25)

This is a SG model too with decreasing parameter β′ = β/
√
N for increasing number N

of colors. The calculation for smaller values of β′ requires extreme accuracy. We set the

working precision to several hundreds during the calculations to get some reliable numerical

information for the model. If the effective potential is a parabola in Eq. (3.8) then the IR

value of the dimensionless coupling is

ỹ =
2

β2
. (3.26)
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If we take the parameters from Eq. (3.25), then this relation becomes the same. Let us

note here, that the IR value (3.26) differs a factor of 2 of the one for which the pole occurs

in Eq. (3.24). This is due to the circumstance that the relation (3.24) corresponds to the

neglection of the higher-harmonics of the blocked periodic potential, whereas our numerical

approach avoiding the Fourier-expansion takes automatically all higher harmonics with. In

order to enlighten the deviation of our result from the Maxwell-cut induced parabolic

effective potential (3.8) it is reasonable to plot 2 − ỹβ2 as the function of the color N , see

Fig. 3. We succeeded to calculate it only up to N = 5. Nevertheless the figure clearly

shows that ỹ → 2/β2 for N → ∞. These results also give vanishing dimensionful coupling

10-5

10-4

10-3

10-2

10-1

 1  2  3  4  5  6

2-
yβ

2

N
~

~2-yβ2=0.58e-1.78N

Figure 3: The N dependence of the function 2 − ỹβ2.

y in the IR limit. One can have the same conclusion as was obtained in the 3-color case,

namely the low energy N -color QCD2 is a massless interacting theory.

4. Summary

The phase structure of the bosonized version of the multi-color QCD2 is mapped out and

it was shown, that the model possesses a single phase.

After bosonization of the original fermionic model a periodic self-interacting scalar

model is obtained with a mass matrix. The more involved last self-interaction term of the

Hamiltonian (2.11) is shown to be treatable by Taylor-expansion giving further corrections

to the mass matrix, so far the system is considered in or close to the ground state. The

bosonized 2-color QCD2 coincides with the 2-flavor QED2 which implies the similar trivial

phase structures of these models. The bosonized 3-color QCD2 and 3-flavor QED2 are,

however, different models. The bosonized 3-flavor QED2 is known to be in the symmetry

(periodicity) broken phase and represents a free massive theory. The scaling laws and the

phase structure of the bosonized multi-color QCD2 has been determined by the functional

RG technique, applying the Callan-Symanzik renormalization scheme. The periodic self-

interaction has been found to be UV relevant, which tries to drive the flow into a pole,

– 13 –



signaling that theN -color QCD2 is in the symmetry broken phase. The IR physics of theN -

color QCD2 has been also determined after diagonalizing the mass matrix and integrating

out the massive fields in the free-field approximation. It was found that the bosonized

multi-color QCD2 represents effectively a SG-type model in the symmetry broken phase,

characterized by a superuniversal dimensionless effective potential. In the IR limit the

quantum fluctuations try to drive the system to a non-trivial saddle point what seems to

be, however, never reached at finite energy scale. Nevertheless, the larger the number N

of colors is the closer the dimensionless effective potential is driven to the parabolic shape

(3.8). Making use of the bosonization relations, we have concluded that the N -color QCD2

is a massless interacting fermionic model.
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