2,512 research outputs found

    Statistical Study of the Reconnection Rate in Solar Flares Observed with YOHKOH/SXT

    Full text link
    We report a statistical study of flares observed with the Soft X-ray Telescope (SXT) onboard Yohkoh in the year of 2000. We measure physical parameters of 77 flares, such as the temporal scale, the size, and the magnetic flux density and find that the sizes of flares tend to be distributed more broadly as the GOES class becomes weaker and that there is a lower limit of magnetic flux density that depends on the GOES class. We also examine the relationship between these parameters and find weak correlation between temporal and spatial scales of flares. We estimate reconnection inflow velocity, coronal Alfven velocity, and reconnection rate using above observed values. The inflow velocities are distributed from a few km/s to several tens km/s and the Alfven velocities in the corona are in the range from 10^3 to 10^4 km/s. Hence the reconnection rate is 10^-3 - 10^-2. We find that the reconnection rate in a flare tends to decrease as the GOES class of the flare increases. This value is within one order of magnitude from the theoretical maximum value predicted by the Petschek model, although the dependence of the reconnection rate on the magnetic Reynolds number tends to be stronger than that in the Petschek model.Comment: 21 pages, 8 figures, accepted for publication in Ap

    Sub-Zero Alteration in an Isotopically Heavy Brine Preserved in a Pristine H Chondrite Xenolith

    Get PDF
    Introduction: Brecciated H chondrites host a variety of xenoliths, including unshocked, phyllo- silicate-rich carbonaceous chondrites (CCs). The brecciated H chondrite Zag (H3-6) is one of two chondrites to host macroscopic (1 - 5mm), xenolithic crystals of halite (NaCl) with aqueous fluid inclusions and organics. A ~1cm CC xenolith in Zag (Zag clast) has mineralogy similar to CI chondrites, but it has a unique bulk oxygen isotopic composition among all meteorites ((exp 17)O = 1.49 0.04 , (exp 18)O = 22.38 0.17 ). The Zag clast encloses halite in its matrix, linking the coarse, matrix halite and the xenolith to the same parent object, suggested to be hydrovolcanically active. Its bulk C and N contents are the highest among chondrites and bulk (exp 15)N is similar to CR chondrites and Bells. Insoluble organic material (IOM) in the Zag clast has D and (exp 15)N hotspots, also similar to CR chondrites and Bells (C2-ung.). We provide further isotopic characterization of the Zag clast to constrain the formation temperature and origin of its primary and secondary components

    Using Translated Instruments In Research

    Get PDF
    International and cross cultural research in the global community often requires translations of instruments. This paper reviews the development of a translation protocol for instruments written in English for a Western culture and used for a different language and culture

    On Iron Enrichment, Star Formation, and Type Ia Supernovae in Galaxy Clusters

    Get PDF
    The nature of star formation and Type Ia supernovae (SNIa) in galaxies in the field and in rich galaxy clusters are contrasted by juxtaposing the build-up of heavy metals in the universe inferred from observed star formation and supernovae rate histories with data on the evolution of Fe abundances in the intracluster medium (ICM). Models for the chemical evolution of Fe in these environments are constructed, subject to observational constraints, for this purpose. While models with a mean delay for SNIa of 3 Gyr and standard initial mass function (IMF) are consistent with observations in the field, cluster Fe enrichment immediately tracks a rapid, top-heavy phase of star formation -- although transport of Fe into the ICM may be more prolonged and star formation likely continues to redshifts <1. The source of this prompt enrichment is Type II supernovae (SNII) yielding at least 0.1 solar masses per explosion (if the SNIa rate normalization is scaled down from its value in the field according to the relative number of candidate progenitor stars in the 3-8 solar mass range) and/or SNIa explosions with short delay times associated with the rapid star formation mode. Star formation is >3 times more efficient in rich clusters than in the field, mitigating the overcooling problem in numerical cluster simulations. Both the fraction of baryons cycled through stars, and the fraction of the total present-day stellar mass in the form of stellar remnants, are substantially greater in clusters than in the field.Comment: 51 pages including 26 figures and 2 tables, accepted for publication in ApJ 5/4/0

    Two-component model of the interaction of an interstellar cloud with surrounding hot plasma

    Full text link
    We present a two-component gasdynamic model of an interstellar cloud embedded in a hot plasma. It is assumed that the cloud consists of atomic hydrogen gas, interstellar plasma is quasineutral. Hydrogen atoms and plasma protons interact through a charge exchange process. Magnetic felds and radiative processes are ignored in the model. The influence of heat conduction within plasma on the interaction between a cloud and plasma is studied. We consider the extreme case and assume that hot plasma electrons instantly heat the plasma in the interaction region and that plasma flow can be described as isothermal. Using the two-component model of the interaction of cold neutral cloud and hot plasma, we estimate the lifetime of interstellar clouds. We focus on the clouds typical for the cluster of local interstellar clouds embedded in the hot Local Bubble and give an estimate of the lifetime of the Local interstellar cloud where the Sun currently travels. The charge transfer between highly charged plasma ions and neutral atoms generates X-ray emission. We assume typical abundance of heavy ions for the Local Bubble plasma and estimate the X-ray emissivity due to charge exchange from the interface between cold neutral cloud and hot plasma. Our results show that charge exchange X-ray emission from the neutral-plasma interfaces can be a non-negligible fraction of the observed X-ray emission.Comment: 9 pages, 7 figure

    Interference Effects, Time Reversal Violation and Search for New Physics in Hadronic Weak Decays

    Get PDF
    We propose some methods for studying hadronic sequential two-body decays involving more spinning particles. It relies on the analysis of T-odd and T-even asymmetries, which are related to interference terms. The latter asymmetries turn out to be as useful as the former ones in inferring time reversal violating observables; these in turn may be sensitive, under some particular conditions, to possible contributions beyond the standard model. Our main result is that one can extract such observables even after integrating the differential decay width over almost all of the available angles. Moreover we find that the correlations based exclusively on momenta are quite general, since they provide as much information as those involving one or more spins. We generalize some methods already proposed in the literature for particular decay channels, but we also pick out a new kind of time reversal violating observables. Our analysis could be applied, for example, to data of LHCb experiment.Comment: 35 page

    Oxygen, Magnesium, and Aluminum Isotopes in the Ivuna CAI: Re-Examining High-Temperature Fractionations in CI Chondrites

    Get PDF
    CI chondrites are thought to approximate the bulk solar system composition since they closely match the composition of the solar photosphere. Thus, chemical differences between a planetary object and the CI composition are interpreted to result from fractionations of a CI starting composition. This interpretation is often made despite the secondary mineralogy of CI chondrites, which resulted from low-T aqueous alteration on the parent asteroid(s). Prevalent alteration and the relatively large uncertainties in the photospheric abundances (approx. +/-5-10%) permit chemical fractionation of CI chondrites from the bulk solar system, if primary chondrules and/or CAIs have been altered beyond recognition. Isolated olivine and pyroxene grains that range from approx. 5 microns to several hundred microns have been reported in CI chondrites, and acid residues of Orgueil were found to contain refractory oxides with oxygen isotopic compositions matching CAIs. However, the only CAI found to be unambiguously preserved in a CI chondrite was identified in Ivuna. The Ivuna CAI's primary mineralogy, small size (approx.170 microns), and fine-grained igneous texture classify it as a compact type A. Aqueous alteration infiltrated large portions of the CAI, but other regions remain pristine. The major primary phases are melilite (Ak 14-36 ), grossmanite (up to 20.8 wt.% TiO 2 ), and spinel. Both melilite and grossmanite have igneous textures and zoning patterns. An accretionary rim consists primarily of olivine (Fa 2-17 ) and low-Ca pyroxene (Fs 2-10 ), which could be either surviving CI2 material or a third lithology

    Numerical Galaxy Catalog -I. A Semi-analytic Model of Galaxy Formation with N-body simulations

    Full text link
    We construct the Numerical Galaxy Catalog (ν\nuGC), based on a semi-analytic model of galaxy formation combined with high-resolution N-body simulations in a Λ\Lambda-dominated flat cold dark matter (Λ\LambdaCDM) cosmological model. The model includes several essential ingredients for galaxy formation, such as merging histories of dark halos directly taken from N-body simulations, radiative gas cooling, star formation, heating by supernova explosions (supernova feedback), mergers of galaxies, population synthesis, and extinction by internal dust and intervening HI clouds. As the first paper in a series using this model, we focus on basic photometric, structural and kinematical properties of galaxies at present and high redshifts. Two sets of model parameters are examined, strong and weak supernova feedback models, which are in good agreement with observational luminosity functions of local galaxies in a range of observational uncertainty. Both models agree well with many observations such as cold gas mass-to-stellar luminosity ratios of spiral galaxies, HI mass functions, galaxy sizes, faint galaxy number counts and photometric redshift distributions in optical pass-bands, isophotal angular sizes, and cosmic star formation rates. In particular, the strong supernova feedback model is in much better agreement with near-infrared (K'-band) faint galaxy number counts and redshift distribution than the weak feedback model and our previous semi-analytic models based on the extended Press-Schechter formalism. (Abridged)Comment: 26 pages including 27 figures, accepted for publication in ApJ, full-resolution version is available at http://grape.astron.s.u-tokyo.ac.jp/~yahagi/nugc

    Detection of Diatomic Molecules in the Dust Forming Nova V2676 Oph

    Get PDF
    Novae are generally considered to be hot astronomical objects and show effective temperatures up to 10,000 K or higher at their visual maximum. But, it is theoretically predicted that the outer envelope of the nova outflow can become cool enough to form molecules that would be dissociated at high temperatures. We detected strong absorption bands of C2 and CN radicals in the optical spectrum of Nova V2676 Oph, a very slow nova with dust formation. This is the first report of the detection of C2 and the second one of CN in novae during outburst. Although such simple molecules are predicted to form in the envelope of the outflow based on previous studies, there are few reports of their detection. In the case of V2676 Oph, the presence of the molecular envelope is considered to be very transient, lasting several days only

    Radial distribution function of semiflexible polymers

    Full text link
    We calculate the distribution function of the end--to--end distance of a semiflexible polymer with large bending rigidity. This quantity is directly observable in experiments on single semiflexible polymers (e.g., DNA, actin) and relevant to their interpretation. It is also an important starting point for analyzing the behavior of more complex systems such as networks and solutions of semiflexible polymers. To estimate the validity of the obtained analytical expressions, we also determine the distribution function numerically using Monte Carlo simulation and find good quantitative agreement.Comment: RevTeX, 4 pages, 1 figure. Also available at http://www.cip.physik.tu-muenchen.de/tumphy/d/T34/Mitarbeiter/frey.htm
    corecore