20 research outputs found

    The Non-Mechanical Beam Steering of Light in Reflective Inverse Diffusion

    Get PDF
    Wavefront shaping is a technique that uses spatial light modulators to conjugate the phase of light incident on a rough surface, such that the light will refocus after reflection. This refocusing effect is called reflective inverse diffusion. There currently are two different approaches used to achieve reflective inverse diffusion: iterative methods and matrix methods. Iterative methods find one phase mask which allows for reflected light to be focused at a single, specific position, with results that are immediately available and continuously improving. Matrix methods calculate the complex matrix which describes the rough surface and allows for reflected light to be focused at many positions after reflection and at multiple spots simultaneously. However, matrix methods are susceptible to decreased performance in a noisy system, and their results are not immediately available. This thesis provides an alternative to the current paradigm of choosing between iterative methods and matrix methods by showing that beam steering can be integrated into existing iterative methods, giving them the multiple-spot capabilities of matrix methods. For a focal plane system, a genetic algorithm not previously used for reflective inverse diffusion is used to find a phase mask that focuses light to one point. Circular shifts are then applied to the phase mask that create phase tilts at the rough surface and steer the reflected spot at the cost of decreased enhancement with a larger shift

    Beam Formation and Vernier Steering off of a Rough Surface

    Get PDF
    Wavefront shaping can refocus light after it reflects from an optically rough surface. One proposed use case of this effect is in indirect imaging; if any rough surface could be turned into an illumination source, objects out of the direct line of sight could be illuminated. In this paper, we demonstrate the superior performance of a genetic algorithm compared to other iterative feedback-based wavefront shaping algorithms in achieving reflective inverse diffusion for a focal plane system. Next, the ability to control the pointing direction of the refocused beam with high precision over a narrow angular range is demonstrated, though the challenge of increasing the overall scanning range of the refocused beam remains. The method of beam steering demonstrated in this paper could act as a vernier adjustment to a coarse adjustment offered by another method

    Magnetoresistance through a single molecule

    Full text link
    The use of single molecules to design electronic devices is an extremely challenging and fundamentally different approach to further downsizing electronic circuits. Two-terminal molecular devices such as diodes were first predicted [1] and, more recently, measured experimentally [2]. The addition of a gate then enabled the study of molecular transistors [3-5]. In general terms, in order to increase data processing capabilities, one may not only consider the electron's charge but also its spin [6,7]. This concept has been pioneered in giant magnetoresistance (GMR) junctions that consist of thin metallic films [8,9]. Spin transport across molecules, i.e. Molecular Spintronics remains, however, a challenging endeavor. As an important first step in this field, we have performed an experimental and theoretical study on spin transport across a molecular GMR junction consisting of two ferromagnetic electrodes bridged by a single hydrogen phthalocyanine (H2Pc) molecule. We observe that even though H2Pc in itself is nonmagnetic, incorporating it into a molecular junction can enhance the magnetoresistance by one order of magnitude to 52%.Comment: To appear in Nature Nanotechnology. Present version is the first submission to Nature Nanotechnology, from May 18th, 201

    X-ray Constraints on the Lyman-Alpha Escape Fraction

    Full text link
    We have coadded X-ray flux of all known Lyman Alpha Emitters (LAEs) in the 4 Msec Chandra Deep Field South (CDF-S) region, to place sensitive upper limits on the average unobscured star-formation rate (SFR_X) in these galaxies. A very small fraction of Lyman-Alpha galaxies in the field are individually detected in the X-rays, implying a low fraction of AGN activity. After excluding the few X-ray detected LAEs, we stack the undetected LAEs located in the 4 Ms CDF-S data and 250 ks Extended CDF-S (ECDFS) data, and compute a 1-\sigma upper limit on SFR_X < 14, 28, 28, 140, 440, 880 M_{\sun} yr1^{-1} for LAEs located at z = 2.1, 3.1, 3.2, 4.5, 5.7 and 6.5, respectively. The upper limit of SFR_X in LAEs can be then be compared to SFRLyα_{Ly\alpha} derived from Lyman-Alpha line and thus can constrain on the Lyman-Alpha escape fraction (fLyαEscf^{Esc}_{Ly\alpha}). We derive a lower limit on f(Lyman-Alpha Escape) > 14% (84 % confidence level, 1-\sigma lower limit) for LAEs at redshift z ~ 2.1 and z ~ 3.1-3.2. At z > 4, the current LAE samples are not of sufficient size to constrain SFR_X well. By averaging all the LAEs at z> 2, the X-ray non-detection constrains f(Lyman-Alpha Escape) > 17% (84 % confidence level, 1-\sigma lower limit), and rejects f(Lyman-Alpha Escape) < 5.7% at the 99.87% confidence level from 2.1 < z < 6.5.Comment: 11 pages, 3 tables, 3 figures, ApJ accepte

    EMPRESS. IX. Extremely Metal-Poor Galaxies are Very Gas-Rich Dispersion-Dominated Systems: Will JWST Witness Gaseous Turbulent High-z Primordial Galaxies?

    Full text link
    We present kinematics of 6 local extremely metal-poor galaxies (EMPGs) with low metallicities (0.0160.098 Z0.016-0.098\ Z_{\odot}) and low stellar masses (104.7107.6M10^{4.7}-10^{7.6} M_{\odot}). Taking deep medium-high resolution (R7500R\sim7500) integral-field spectra with 8.2-m Subaru, we resolve the small inner velocity gradients and dispersions of the EMPGs with Hα\alpha emission. Carefully masking out sub-structures originated by inflow and/or outflow, we fit 3-dimensional disk models to the observed Hα\alpha flux, velocity, and velocity-dispersion maps. All the EMPGs show rotational velocities (vrotv_{\rm rot}) of 5--23 km s1^{-1} smaller than the velocity dispersions (σ0\sigma_{0}) of 17--31 km s1^{-1}, indicating dispersion-dominated (vrot/σ0=0.290.80<1v_{\rm rot}/\sigma_{0}=0.29-0.80<1) systems affected by inflow and/or outflow. Except for two EMPGs with large uncertainties, we find that the EMPGs have very large gas-mass fractions of fgas0.91.0f_{\rm gas}\simeq 0.9-1.0. Comparing our results with other Hα\alpha kinematics studies, we find that vrot/σ0v_{\rm rot}/\sigma_{0} decreases and fgasf_{\rm gas} increases with decreasing metallicity, decreasing stellar mass, and increasing specific star-formation rate. We also find that simulated high-zz (z7z\sim 7) forming galaxies have gas fractions and dynamics similar to the observed EMPGs. Our EMPG observations and the simulations suggest that primordial galaxies are gas-rich dispersion-dominated systems, which would be identified by the forthcoming James Webb Space Telescope (JWST) observations at z7z\sim 7.Comment: Submitted to ApJ; After revisio

    Finishing the euchromatic sequence of the human genome

    Get PDF
    The sequence of the human genome encodes the genetic instructions for human physiology, as well as rich information about human evolution. In 2001, the International Human Genome Sequencing Consortium reported a draft sequence of the euchromatic portion of the human genome. Since then, the international collaboration has worked to convert this draft into a genome sequence with high accuracy and nearly complete coverage. Here, we report the result of this finishing process. The current genome sequence (Build 35) contains 2.85 billion nucleotides interrupted by only 341 gaps. It covers ∼99% of the euchromatic genome and is accurate to an error rate of ∼1 event per 100,000 bases. Many of the remaining euchromatic gaps are associated with segmental duplications and will require focused work with new methods. The near-complete sequence, the first for a vertebrate, greatly improves the precision of biological analyses of the human genome including studies of gene number, birth and death. Notably, the human enome seems to encode only 20,000-25,000 protein-coding genes. The genome sequence reported here should serve as a firm foundation for biomedical research in the decades ahead
    corecore