
Air Force Institute of Technology
AFIT Scholar

Theses and Dissertations Student Graduate Works

3-22-2019

The Non-Mechanical Beam Steering of Light in
Reflective Inverse Diffusion
Eric K. Nagamine

Follow this and additional works at: https://scholar.afit.edu/etd

Part of the Optics Commons, and the Plasma and Beam Physics Commons

This Thesis is brought to you for free and open access by the Student Graduate Works at AFIT Scholar. It has been accepted for inclusion in Theses and
Dissertations by an authorized administrator of AFIT Scholar. For more information, please contact richard.mansfield@afit.edu.

Recommended Citation
Nagamine, Eric K., "The Non-Mechanical Beam Steering of Light in Reflective Inverse Diffusion" (2019). Theses and Dissertations.
2205.
https://scholar.afit.edu/etd/2205

https://scholar.afit.edu?utm_source=scholar.afit.edu%2Fetd%2F2205&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholar.afit.edu/etd?utm_source=scholar.afit.edu%2Fetd%2F2205&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholar.afit.edu/graduate_works?utm_source=scholar.afit.edu%2Fetd%2F2205&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholar.afit.edu/etd?utm_source=scholar.afit.edu%2Fetd%2F2205&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/204?utm_source=scholar.afit.edu%2Fetd%2F2205&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/205?utm_source=scholar.afit.edu%2Fetd%2F2205&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholar.afit.edu/etd/2205?utm_source=scholar.afit.edu%2Fetd%2F2205&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:richard.mansfield@afit.edu


The Non-Mechanical Beam Steering of Light in
Reflective Inverse Diffusion

THESIS

Eric K. Nagamine, 2Lt, USAF

AFIT-ENP-19-M-086

DEPARTMENT OF THE AIR FORCE
AIR UNIVERSITY

AIR FORCE INSTITUTE OF TECHNOLOGY

Wright-Patterson Air Force Base, Ohio

DISTRIBUTION STATEMENT A
APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED.



The views expressed in this document are those of the author and do not reflect the
official policy or position of the United States Air Force, the United States Department
of Defense or the United States Government. This material is declared a work of the
U.S. Government and is not subject to copyright protection in the United States.



AFIT-ENP-19-M-086

The Non-Mechanical Beam Steering of Light in Reflective Inverse Diffusion

THESIS

Presented to the Faculty

Department of Engineering Physics

Graduate School of Engineering and Management

Air Force Institute of Technology

Air University

Air Education and Training Command

in Partial Fulfillment of the Requirements for the

Degree of Master of Science in Applied Physics

Eric K. Nagamine, B.S.

2Lt, USAF

February 26, 2019

DISTRIBUTION STATEMENT A
APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED.



AFIT-ENP-19-M-086

The Non-Mechanical Beam Steering of Light in Reflective Inverse Diffusion

THESIS

Eric K. Nagamine, B.S.
2Lt, USAF

Committee Membership:

Lt Col Kenneth W. Burgi, PhD
Chair

Lt Col Samuel D. Butler, PhD
Member

Michael A. Marciniak, PhD
Member



AFIT-ENP-19-M-086

Abstract

Wavefront shaping is a technique that uses spatial light modulators to conjugate

the phase of light incident on a rough surface, such that the light will refocus after

reflection. This refocusing effect is called reflective inverse diffusion. There currently

are two different approaches used to achieve reflective inverse diffusion: iterative

methods and matrix methods. Iterative methods find one phase mask which allows

for reflected light to be focused at a single, specific position, with results that are

immediately available and continuously improving. Matrix methods calculate the

complex matrix which describes the rough surface and allows for reflected light to

be focused at many positions after reflection and at multiple spots simultaneously.

However, matrix methods are susceptible to decreased performance in a noisy system,

and their results are not immediately available. This thesis provides an alternative to

the current paradigm of choosing between iterative methods and matrix methods by

showing that beam steering can be integrated into existing iterative methods, giving

them the multiple-spot capabilities of matrix methods. For a focal plane system, a

genetic algorithm not previously used for reflective inverse diffusion is used to find a

phase mask that focuses light to one point. Circular shifts are then applied to the

phase mask that create phase tilts at the rough surface and steer the reflected spot

at the cost of decreased enhancement with a larger shift.
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The Non-Mechanical Beam Steering of Light in Reflective Inverse Diffusion

I. Introduction

1.1 Motivation

Optical imaging systems depend upon ballistic light that travels along a direct

line of sight from the target being imaged to the imaging system. Imaging cannot

be performed if there are obstacles or processes along a path that scatter light and

eliminate the straight line of sight. A device which could virtually create a line of

sight where it does not naturally exist would allow users to see around corners or past

obstacles without physical equipment in that line of sight. In the hands of a trained

warfighter, this capability could give a dearly needed tactical edge. Diffuse scattering

due to reflection off of a rough surface is one effect that makes standard imaging

impossible. When a surface is not optically smooth, it means that the height and

slope of the surface vary rapidly compared to the wavelength of incident light. These

rapid variations cause reflected light to be scattered, which is a reason why one is

unable to see reflections off of rough surfaces. However, using spatial light modulators,

a process called wavefront shaping allows for light to be refocused instead of scattered

after reflection from a rough surface. This refocusing effect is called reflective inverse

diffusion, and is a necessary part of the process that could be used to see around

corners.
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1.2 Application of Dual Photography

The application of reflective inverse diffusion that could allow for seeing around

corners is in a technique called Dual Photography [1]. Dual photography is based on

Helmholtz reciprocity, which is the concept that a “signal” can be propagated between

two points starting at one or the other, and there is a symmetric relationship where

the receiving point will receive the same signal. In dual photography, by exploiting

Helmholtz reciprocity, it is possible to virtually interchange the position of a camera

and a projector, as shown in Figure 1.

Figure 1. The concept behind dual photography. The propagation of light between
projector and camera is measured, allowing for the positions of the projector and the
camera to be virtually interchanged. Hidden scene information, from the point of view
of the projector can be uncovered.

By mapping the propagation of light from each pixel of the projector to each

pixel of the camera in a transport matrix, virtual propagation in the reverse direction

through the matrix can uncover hidden scene information [2]. In practice, this by itself

is not very useful, because if there is a projector available for use at some location,

there are few reasons why a camera itself could not be placed there, defeating the need

for dual photography. The novel application of reflective inverse diffusion is that it

allows for the creation of a focused beam after random scattering, which means that

a rough surface could be made into a projector. Therefore, because dual photography

allows for the virtual interchange of a projector and a camera, a virtual camera could

be created at the rough surface, which should reveal hidden information from the

perspective of the rough surface i.e. seeing around corners.

2



1.3 Objective

Currently, wavefront shaping techniques used to achieve reflective inverse diffusion

work by finding phase masks that are applied to light incident on a rough surface

with an SLM. Ideally, the phase mask conjugates the light so that when it reflects

from the rough surface, it refocuses into a single beam. A key limitation of current

techniques is that they require a different phase mask for every different direction

that the refocused beam is aimed. Imaging applications would naturally require that

the refocused beam is scanned across a large area, so this would require the creation

of many different phase masks, which is prohibitively slow.

The objective of this research is to demonstrate that in wavefront shaping, one

phase mask is capable of being repurposed to refocus light in reflective inverse diffusion

in more than one direction. This allows for scanning of the refocused beam across an

area without the need to find more than one phase mask.

1.4 Overview

Non-specific optics and mathematical principles, which are important to the re-

search are covered as background in Chapter II. The theories behind wavefront shap-

ing methods that create inverse diffusion, including previous work performed at AFIT

are included in Chapter III. The process used to achieve reflective inverse diffusion,

which includes a new and robust genetic algorithm for wavefront shaping, is covered

in Chapter IV. Last, non-mechanical beam steering is covered in Chapter V followed

by a conclusion in Chapter VI that provides on overview of the work, and a preview

of work to come.
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II. Background

2.1 Introduction

This chapter is meant to be a review of mathematics and optics principles which

are important for understanding wavefront shaping and reflective inverse diffusion

research, but are not specific to it. The properties of analytic Fourier transforms are

discussed, followed by an introduction to discrete Fourier transforms as computational

tools. Next, the model of Rayleigh-Sommerfeld diffraction for light propagation is

discussed. Finally, non-mechanical beam steering, spatial light modulators, and their

connection are discussed.

2.2 Fourier Transforms

A Fourier transform is a mathematical operation that relates a function defined in

position or temporal space to frequency space. The two dimensional Fourier transform

and inverse Fourier transform are defined by the Fourier integrals in Equations (1)

and (2) respectively.

G(fx, fy) =

∫ ∞
−∞

∫ ∞
−∞

g(x, y) exp [−i2π(fxx+ fyy)]dxdy, (1)

g(x, y) =

∫ ∞
−∞

∫ ∞
−∞

G(fx, fy) exp [i2π(fxx+ fyy)]dfxdfy, (2)

for a function g(x, y), and its frequency spectra G(fx, fy), with independent variables

x and y. The Fourier transform has been well studied, so properties of the Fourier

transform, such as Fourier transform pairs of common functions, and other properties

are known. The convolution theorem of Fourier transforms in Equation (3) makes

Fourier transforms a useful tool for computing convolutions [3]. The theorem states
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that the Fourier transform of two functions being convolved is equal to the product

of the Fourier transforms of the individual functions. In mathematical notation, the

theorem is

F [A ∗B] = F [A]F [B], (3)

for functions A and B, where F is the Fourier transform operator, and ∗ is the

convolution operator. The shift theorem of Fourier transforms in Equation (4) relates

translations of a function in one domain to phase shifts of the Fourier transform.

F [g(x− a, y − b)] = F [g(x, y)] exp[−i2π(fxa+ fyb)], (4)

where a and b are constants. The shift theorem shows that when a function is

translated before undergoing a Fourier transform, the transform remains the same

except that a linearly tilted phase shift is applied to it, with a slope proportional

to the size of the translation. The Fourier integral theorem in Equation (5) states

that an inverse Fourier transform undoes a Fourier transform, and that a Fourier

transform undoes an inverse Fourier transform.

F [F−1[g(x, y)]] = F−1[F [g(x, y)]] = g(x, y), (5)

where F−1 is the inverse Fourier transform operator. The Fourier integral theorem

simplifies operations where repeated Fourier transforms and inverse Fourier trans-

forms are used.

2.3 Discrete Fourier Transforms and the Fast Fourier Transform

Real data sets are naturally discrete, and finite. On discrete data, analytic Fourier

transforms cannot be used. The discrete Fourier transform (DFT) is the analogous
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operation that is used for discrete data, shown in Equation (6). The discrete frequency

spectrum G(fx, fy) found by the DFT is given by

G(fx, fy) =
Nx−1∑
n=0

Ny−1∑
m=0

g(n∆x,m∆y) exp [−i2π(fxn∆x+ fym∆y)]. (6)

where data, g(x, y), is sampled from a two dimensional space space Nx by Ny points

wide, taken at at even intervals of ∆x and ∆y respectively. Equation (6) can be used

to find the DFT of a data set element by element, or simultaneously if matrix algebra

is used, but it takes on the order of N2
xN

2
y operations to compute the entire spectrum

[3]. The relationship between the interval over which the function is sampled and the

spacing of the discrete frequency spectrum is given in Equation (7) as

∆fx =
1

(Nx − 1)∆x

=
1

Lx
,

(7)

where Lx is the length of the sampled region along the x-dimension, and the same

relation applies to the y dimension. Similarly, the relationship between the spacing

between sampled points, and the range of the frequency spectrum is given by Equation

(8) as

1

∆x
= (Nx − 1)∆fx

= Lfx ,

(8)

where Lfx is the length in frequency space of the generated frequency spectrum. The

fast Fourier transform (FFT) is a class of algorithms that can reduce the cost of DFTs

to an order of Nxlog(Nx)Nylog(Ny) operations [4]. All FFT algorithms operate on

the principle of breaking down a large DFT recursively into smaller DFTs [4]. For
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applications where a DFT is required, such as in diffraction simulations, FFTs are

the algorithms that are typically used because of their efficiency.

2.4 Rayleigh-Sommerfeld Diffraction

Rayleigh-Sommerfeld diffraction is a model for describing the propagation of light,

based on the Huygens-Fresnel principle, which treats every point along a wavefront

as a source of secondary spherical wavelets [3]. In Figure 2, the electric field, U(P1),

at a finite aperture, Σ, propagates to create the field at a point some distance away,

U(P0). The Rayleigh-Sommerfeld Diffraction integral, in Equation (9), describes this

Figure 2. Given a known field distribution U(P1) across an aperture Σ, the Rayleigh-
Sommerfeld Diffraction integral calculates the electric field due to secondary wavelets
as they propagate to a point P0.

propagation;

U(P0) =
1

iλ

∫∫
Σ

U(P1)
exp(ikr01)

r01

cos(θ)ds, (9)

where λ is the wavelength, k is the propagation constant of the wave, ~r01 is a vector

from the field point to the center of the aperture, and θ is defined by the angle be-

tween the aperture’s surface normal and ~r01. Rayleigh-Sommerfeld diffraction is valid
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so long as r01 � λ, and is more accurate than the Fresnel and Fraunhoffer models of

diffraction, which are themselves derived from Rayleigh-Sommerfeld diffraction. How-

ever, the Rayleigh-Sommerfield diffraction integral is often not analytically solvable

[3].

The Rayleigh-Sommerfeld diffraction integral can also be viewed as a convolution

of the source field with the spherical wave impulse response, shown in Equation (10).

U(P0) = U(P1) ∗ h(x, y, z), (10)

where h(x, y, z) is the spherical wave impulse response, defined in Equation (11) as

h(x, y, z) =
z

iλ

exp(ikr01)

r2
01

. (11)

Using the convolution theorem of Fourier transforms in Equation (3), the field U(P0)

can be determined without using the Rayleigh-Sommerfeld Diffraction integral. The

field is given in Equation (12) as

U(P0) =
z

iλ
F−1[F [U(P1)]H(fx, fy, z)], (12)

where H(fx, fy, z) is called the Rayleigh-Sommerfeld transfer function. H(fx, fy, z)

is defined by the Fourier transform shown in Equation (13) as

z

iλ
H(fx, fy, z) = F [h(x, y, z)], (13)

where the analytic solution to H(fx, fy, z) is given by Equation (14) as

H(fx, fy, z) = exp

(
ikz
√

1− (λfx)2 − (λfy)2

)
. (14)
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Therefore, Equation (12) indicates that the propagation of light using the model

of Rayleigh-Sommerfeld diffraction can be computed with Fourier transforms. Us-

ing FFTs, this process can efficiently model light propagation without the need for

point by point integration as in Equation (9). Using a diffraction-based propaga-

tion model is important to capture phase-based effects such as phase modulation and

non-mechanical beam steering.

2.5 Non-Mechanical Beam Steering

Beam steering refers to the act of changing the direction in which a beam travels.

To do so mechanically, the direction that the illumination source is pointing could

simply be shifted. If a beam is being reflected off of a mirror, that mirror could be

rotated, and the beam would change directions. Non-mechanical beam steering, on

the other hand, is the ability to steer a beam without moving a physical component.

This was demonstrated using liquid crystals in 1996 [5]. The equipment used was a

phased array of liquid crystals, which added a phase tilt to incident light, tilting and

redirecting the reflected waves. This was done by applying a saw tooth pattern of

phase delay across the array, analogous to a blazed grating.

In Figure 3, a blazed grating is shown, and in Figure 4, a phased array of liquid

crystals is shown. For both the blazed grating and the phased array, the relationship

between the incident and reflected angle is based on the blaze angle, θb. At normal

incidence, the reflected wave is at an angle of 2θb from the incident wave. The

reflected angle in the blazed grating can be explained by geometric optics and is also

in agreement with diffractive optics, as shown in Figure 3 (b). The ability of a phased

array of liquid crystals to steer a beam is not compatible with geometric optics, and

it is only because of the wave properties of light that a beam can be non-mechanically

steered, as in Figure 4 (b).
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(a) (b)

Figure 3. Reflection from a blazed grating. An incident plane wave in (a) is reflected
from the grating at an angle in (b) based on the law of reflection, and corroborated by
illustrated Huygens’ wavelets which are shown to reconstruct the reflected plane wave
at an angle.

(a) (b)

Figure 4. Reflection from a liquid crystal phased array. An incident plane wave in (a)
enters the array where the individual liquid crystals apply different amounts of phase
delay in the pattern of a sawtooth profile (dark blue represents a delay that doubles
the optical path length). In (b), portions of the wavefront return to the surface of
the crystals at different times, causing the wavefront to diffract at an angle. Huygens’
wavelets are shown to reconstruct the reflected plane wave at an angle.

2.6 Spatial Light Modulators

The spatial light modulator (SLM) is a piece of equipment used in many wave-

front shaping applications. SLMs are either reflective, or transmissive devices that
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can modulate the amplitude or phase of light in a spatially non-uniform manner across

a wavefront. An SLM consists of a small screen of pixels that can be individually

controlled to shape a wavefront. The mechanism of this control can be physical trans-

lation such as in deformable mirror based SLMs, or the rotation of liquid crystals to

retard phase in liquid crystal on silicon (LCOS) SLMs. LCOS SLMs contain nematic

cells, which perform variable phase retardation. A nematic cell, shown in Figure 5,

consists of crystals suspended in fluid between two alignment layers. The alignment

layers are polished such that the liquid crystals, which are long and thin, tend to align

with the polish. A nematic cell is birefringent, with the index of refraction depending

on the light’s polarization with respect to the crystals’ orientation [3]. By applying

a field to twist the orientation of the crystals, the index of refraction that light sees

when propagating through the cell is altered. This effect is used to variably retard

the phase of a wave.

Figure 5. Design concept of a nematic cell. The liquid crystals (gray) are initially
aligned with the polish of the alignment layers, but the application of an electric field
twists the orientation of the crystals.
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III. Inverse Diffusion Theory

3.1 Introduction

Prior to computational advances which have allowed for the advance of adaptive

optics, diffuse scattering was thought to be a limit to all imaging techniques [6].

Yet, the speckle pattern that forms after diffuse scattering contains some information

about the incident light [7, 8]. In fact, diffuse scattering, though incredibly complex,

is not random. In a static medium, scattering is deterministic and linear [6]. In

the 1990s, the theoretical underpinnings of what is now called inverse diffusion were

developed. In a paper by I. Freund, a diffuse scatterer was treated as a complex field

with which incident light interferes. He theorized that if one used a number of known

reference waves and observed the speckle pattern formed by each, the properties of

the scatterer’s complex field could be determined. Further, reference waves could be

chosen that made the random scatterer act as an optical element such as a lens [8].

In this chapter, the origins of wavefront shaping with transmissive inverse diffusion,

and the mathematics which describe the process are discussed. Next, specific details

of how wavefront shaping algorithms work are discussed. Two classes of algorithms,

called matrix methods, and iterative methods will be covered, followed by a discus-

sion of the parameters used by iterative algorithms and their effects on algorithm

performance. Finally, research into reflective inverse diffusion at AFIT is discussed.

3.2 Wavefront Shaping

In 2007, Ivo M. Vellekoop and Allard P. Mosk demonstrated that the diffusion

of light while propagating through a turbid medium could reversed [9]. Further,

the medium could be made to act as a lens, and actually improve the focus of the

beam [10]. This process where the diffusion of light was reversed was aptly termed
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inverse diffusion. To demonstrate inverse diffusion, they used an SLM divided into N

segments to shape a wavefront before sending it through a stationary, transmissive,

scattering sample, with a setup as shown in Figure 6. The resulting speckle pattern

was then observed on a Charge-Coupled Device (CCD). The algorithm they used to

create a focused beam relied on the linearity of the process. The field at some pixel

Em on the CCD was a linear combination of responses to input fields from each of

the N segments of the SLM, given by Equation (15).

Figure 6. Design concept for Vellekoop and Mosk’s experiment demonstrating wave-
front shaping to achieve transmissive inverse diffusion. An expanded beam from a 632.8
nm HeNe reflects off of an SLM, creating a shaped wavefront, which is imaged onto
the scattering sample. The resulting speckle pattern is then expanded and propagates
to the CCD.

Em =
N∑
n=1

tmnAne
iφn (15)

where tmn are the elements of the transmission matrix discussed by Freund, and An

and eiφn are the amplitude and phase from the nth SLM segment. This algorithm

worked by individually cycling the phase of each of the N SLM segments alone until

a maximum intensity at the desired spot was achieved. Intensity in this context is

defined in Equation (16) as the square modulus of the electric field, so at the mth

pixel,

Im =

∣∣∣∣∣
N∑
n=1

tmnAne
iφn

∣∣∣∣∣
2

. (16)
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At the end, the segments were set to their optimum positions, and a maximum in-

tensity was achieved at the desired location. The metric used to measure the focused

beam was termed enhancement, η, and is defined in Equation (17) as

η ≡ Iopt
〈Iref〉

, (17)

which is the ratio of the optimized intensity over the averaged background intensity.

Vellekoop and Mosk were able to achieve an enhancement above 1000 in one sample,

and they found that the maximum enhancement is proportional to the number of

SLM segments used[9]. The general relationship between number of SLM segments

and maximum enhancement has the form,

ηmax = α(N − 1) + 1, (18)

where α is a constant that depends on the type of modulation used, the intensity

distribution over the SLM, and the type of random scattering process [17, 6]. However,

the actual variable that usually limits enhancement is called the persistence time, Tp,

which is a measure of temporal stability of the system [11]. Tp is found by calculating

the autocorrelation of the field at the observation plane over a period of time. Tp is

the time required for the autocorrelation to reach 1
e

the initial value. Autocorrelation

is the correlation between a signal at an initial point in time and itself at subsequent

points in time.

Different Approaches to Wavefront Shaping.

Vellekoop and Mosk’s initial research paved the way for much of what has been

done in the last 10 years in the field of wavefront shaping, but the initial research

was not concerned with calculating the transmission matrix, instead it dealt with an
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ad-hoc optimization of a single point. Two classes of algorithms now exist for what

is called feedback-based wavefront shaping. The first class of algorithms iteratively

optimize the wavefront to create a maximum enhancement at a point. The second

class of algorithms first measure the complex matrix elements, tmn, and thereby allow

for the flexibility of focusing light onto more than one point [6]. It is important to

understand the difference in results produced by these two methods. The iterative

methods find one phase mask which is applied to the SLM and focuses scattered

light to one point on the CCD. Matrix methods attempt to map the entire linear

relationship between segments on the SLM and points on the CCD. Each row of a

reflection (or translation) matrix is its own phase mask which focuses scattered light

onto one point on the CCD, whereas each column is the phase profile on the CCD

caused by the propagation of one SLM segment.

3.3 Matrix Calculation Methods

In order to calculate a transmission matrix (TM or reflection matrix (RM), the

contribution from each SLM segment must be measured separately. One of the best

methods to measure an RM or a TM is called Parallel Wavefront Optimization (PWO)

[12]. A variant of this method was demonstrated by Yoon et al. in 2015, and has also

been applied for measurement of a reflection matrix [13, 14]. The method separated

SLM pixels into two groups, shown in Figure 7. One group was held static, in order

to serve as a reference, while in the other group, the pixels were modulated at unique

frequencies ω1, ω2, ω3...ωN/2. A Fourier decomposition of the resulting CCD output

allowed for each segment’s contribution to each of the CCD’s channels to be singled

out. PWO requires 4N + 8 intensity measurements by the CCD to be completed,

where again, N is the number of SLM segments.

The advantages of calculating a TM or RM are that in the ideal case, such in-
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Figure 7. Yoon’s method for determining the transmission matrix, called Parallel Wave-
front Optimization. The SLM segments are split into two groups. Initially one group
at a time has its segments modulating at different frequencies while the other group is
held constant. Last, the entire groups are modulated at two different frequencies.

formation is reusable and is itself useful because of the information about the diffuse

scatterer it contains. Once the matrix is known, arbitrary patterns can be imaged

onto the CCD. However, the time required to make the matrix (which must be done

first), and the necessity for a static medium are both drawbacks. Before enhancement

of a desired location is performed, the whole transmission matrix must be measured.

Research has shown that as time goes on, previously optimized segments tend to

become suboptimal by the time the process is complete [1].

3.4 Iterative Methods

Iterative methods are specially designed to quickly and optimally create enhance-

ment at a desired spot. They are feedback-driven processes that measure enhancement

while modulating the phase of SLM segments to increase that enhancement. In this

way, they iteratively find phase masks which create the highest enhancement.

One way to find the best phase shifts to apply to SLM segments, is to individually

modulate their phases while recording the enhancement of the desired spot. This

is the basis for two prominent algorithms called the continuous sequential algorithm

(CSA), and the partitioning algorithm (PA) [11]. In the CSA, shown in Figure 8, the

SLM segments are ordered, and one by one, sequentially, the phase of each segment is

modulated over a discrete range of possible phase levels. The enhancement is recorded

as a segment modulates over each phase level, and after the modulation of a segment
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is complete, its phase is set to the level which produced the highest enhancement.

The PA, shown in Figure 9, is very similar to the CSA. For each iteration, a random

partition of the SLM segments is chosen. Like the CSA, those segments are modulated

over a discrete range of possible phase levels, while the enhancement is recorded for

each phase level, then the optimum phase level is assigned to the partitioned segments.

Figure 8. The Continuous Sequential Algorithm (CSA) with preoptimization. The
CSA modulates individual SLM segments through a number of chosen phase levels to
determine the best phase level for each segment. Preoptimization starts off with larger
segments before working down to the desired segment size

In principle, the CSA and PA should be able to directly find the optimal phase

for each SLM segment, at least to the nearest discrete phase level. In practice, they

are limited by noisy testing conditions combined with low signal to noise ratios,

which make discerning precise optimal levels difficult for individual or partitioned

segments. The application of genetic algorithms (GAs) to iterative wavefront shaping

was demonstrated by Conkey et al. for achieving enhancement after light propagation

through a turbid medium [15]. These algorithms take more of a black box approach
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Figure 9. The Partitioning Algorithm (PA) is an iterative algorithm for inverse dif-
fusion. Half of the SLM segments are chosen at random to have their phases cycled
simultaneously through a number of chosen phase levels. The partitioned segments are
set to the best phase level then again, half of the segments are again chosen at random,
continuing until a desired end goal is achieved.

to achieve enhancement, because while still feedback driven, their main mechanism

of achieving enhancement is not a programmed search for optimal phase values of

specific SLM segments, but random chance and a survival of the fittest premise.

Conkey’s algorithm, shown in Figure 10, works by initially generating a random set

of phase masks, then ranking each mask according to fitness, which is defined by

the enhancement created at a desired spot. Breeding then occurs, which combines

members of the population at random, with a higher chance of breeding given to the

highest ranked phase masks. During breeding, selected parent masks are combined to

make new composite offspring masks, but also random mutations are added to those

offspring. In this way, through a combination of random chance and competition, the

algorithm finds phase masks with increasing fitness. Because the GA measures the

fitness created by entire phase masks, it is more noise resistant than the CSA or PA,

which depend on detecting changes caused by modulations of individual segments.

3.5 Considerations for Iterative Algorithm Parameters

Search Space.

Iterative algorithms operate in a search space of N variables, where N is the

number of SLM segments. The CSA and PA limit the search space by choosing a
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Figure 10. The Genetic Algorithm (GA) designed by Conkey [15]. The algorithm
creates a population of phase masks, then goes through generations where new offspring
are bred, and the worst performing phase masks are removed. Through a survival of
the fittest principle, the population becomes more fit.
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discrete number of allowed phase shift values between 0 and 2π that each segment can

take. This limitation is not due to a lack of levels that the device can display. There

are usually sufficiently many linearly spaced phase levels that the range of possible

values could be considered semi-continuous. For example, the Meadowlark Optics

Reflective XY series model P512 SLM [16] can take over 16, 000 linearly spaced phase

levels. The reason that the CSA and PA must limit the number of allowed phase levels

is that each level corresponds to a required intensity measurement by the algorithm

for each iteration. Having more levels lengthens the time required for each iteration,

Ti. Yet, using smaller step sizes between phase levels should increase the accuracy of

a phase map, since a segment’s optimal phase may not lie directly on a phase level.

Evidence of this has been shown by Burgi for reflective inverse diffusion, where using

21 phase levels corresponding to a step size of π
10

increased the maximum intensity of a

spot by 20% when compared to the use of six phase levels corresponding to a step size

of of 2π
5

[17]. It is unclear what the exact form of the relationship between phase step

size and maximum theoretical enhancement is, but it may safely be asserted that there

is a correlation between maximum enhancement and step size. Combining the known

linear relationship between N and maximum enhancement, from Equation (18), and

the correlation between maximum enhancement and phase step size, the conclusion

is that using a larger search space, which allows for more possible phase masks, may

increase the maximum enhancement that an algorithm can achieve. However, using

a larger search space comes with detriments that sometimes counteract the benefits.

Algorithm Speed.

Using a larger search space may cause an algorithm to take longer by either in-

creasing the iteration time or increasing the number of required iterations. Increasing

the number of phase levels will increase the iteration time, Ti, of the PA and CSA,
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because each phase level corresponds to an intensity measurement that must be made.

On the other hand, the GA does not depend on testing through a number of phase

levels, instead, Ti for the GA depends on the number of offspring created per iteration.

Therefore, there is no obvious reason why the GA should limit the number of allowed

phase levels that it uses, which is one advantage of the GA. The other aspect of the

search space which can be increased is N . Increasing N will increase the runtime of

the CSA because it takes N segment modulations in sequence to make a complete

pass through the SLM. Unlike the CSA, the run times of the PA and GA are not

dependent on N , in the sense that they do not operate in a sequential manner through

all N segments of the SLM. The PA chooses a partition of segments for modulation,

and when using a partition size of 50%, regardless of how large N is, after a few dozen

iterations, virtually all segments will have been included in a partition, and will have

been modulated at least once. Similarly, for the GA, all segments are constantly

being modulated due to the random breeding and mutation process. Therefore, both

the PA and GA can operate with larger N , without a penalty. However, only the GA

can operate in a search space with semi-continuous phase levels, giving it access to a

higher maximum enhancement without the associated long run time.

Decorrelation.

Time cost is not the only detriment caused by long run times or slow iterations.

Decorrelation of the system over time places an upper limit on algorithm performance.

For the CSA, if Tp/Ti � N , then the maximum theoretical enhancement is determined

by Equation (18) [11]. However, if Tp/Ti < N , then time required to make a full pass

through the SLM, NTi, is longer than the persistence time of the system. For this

reason, using an N which is too large is detrimental when using the CSA. The PA,

on the other hand, is not limited by N , but assuming Tp/Ti � N , the maximum
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enhancement of the PA, without noise is η = Tp/(2Ti) + 1 [11]. Conkey’s research

showed that short persistence times decreased the performance of the GA, though

the exact relationship is not known [15].

3.6 Reflective Inverse Diffusion

Reflective inverse diffusion is theoretically very similar to transmissive inverse dif-

fusion, with one key difference. The diffuse scattering process is reflection from a

rough surface, as opposed to propagation through a turbid media. The process is still

deterministic and linear, and thus, most of the mathematics which describe the trans-

missive case apply to the reflective case as well. The most significant mathematical

difference is that when using phase-only modulation, the theoretical enhancement for

reflective inverse diffusion is

ηmax = N, (19)

whereas amplitude and phase modulation is required to make ηmax = N for trans-

missive inverse diffusion [17, 6]. While transmissive inverse diffusion originated with

a need for medical imaging, reflective inverse diffusion was motivated by applications

which could use reflected light for imaging, such as Dual Photography [2] or using a

rough surface as a scattering mirror [18]. The CSA for Reflective Inverse Diffusion

was demonstrated by Burgi et al. in 2016 [17], and later, he demonstrated PWO for

measuring the reflection matrix [1, 14].

The optical setups used for transmissive inverse diffusion depend on optical ele-

ments before and after the interaction with the scattering sample. The applications

for reflective inverse diffusion involve being able to refocus light after random scat-

tering. If a lens could be placed near the scattering sample, or in a position so as to

focus randomly scattered light, there is no reason why the laser source itself could

not simply be positioned there in the first place. This would defeat the purpose of
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Figure 11. Simplified diagram of focal plane setup used in reflective inverse diffusion
simulations, and experimentation done by Burgi [19] [17] [14]. Polarized, collimated
light is expanded and normally incident on the SLM. A beam splitter separates out
modulated light reflected from the incident beam and that modulated light is then
focused by lens L1 onto the scattering sample and reflected to the CCD.

reflective inverse diffusion.

Currently, two different systems for achieving reflective inverse diffusion are called

focal plane systems, and image plane systems. Focal plane systems focus collimated,

modulated light onto the surface of the scattering sample, as shown in Figure 11.

Image plane systems, on the other hand, create a demagnified image of SLM on the

scattering sample, as shown in Figure 12.

3.7 Summary

Wavefront shaping is a technique used for controlling light after diffuse scattering

events. The goal of wavefront shaping is to achieve an effect called inverse diffusion,

which occurs when the phase of light going through a scattering event is conjugated

such that the scattering event focuses that light. The technique is based on the

23



Figure 12. Image plane setup used in reflective inverse diffusion simulations, and
experimentation done by Burgi [1, 19, 14]. Polarized, collimated light is expanded and
normally incident on the SLM. A beamsplitter separates out modulated light reflected
from the incident beam, and the SLM is imaged by lens L1 onto the scattering sample
and reflected to the CCD.

principle that light scatter is a linear, deterministic process. Wavefront shaping uses

SLMs to apply the required phase shifts to the wavefronts. Initially, inverse diffusion

was shown on light transmitted through turbid media, and later it was demonstrated

on light reflected off of rough surfaces. Feedback-based wavefront shaping is a branch

of algorithms which includes both matrix methods and iterative algorithms. These

methods operate by sending modulated light through a scattering interaction and

observing the scattered speckle field for changes with a detector. Matrix methods

attempt to map the linear relationship of light from the SLM onto the detector,

which means that information from the RM or TM can be used to focus light to any

point on the detector. Iterative methods work to focus light on only point on the

camera, but they produce better results than matrix methods. The genetic algorithm

developed by Conkey is arguably the best iterative algorithm because it has been
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shown to outperform other algorithms in noisy conditions, and it can search through

a larger number of possible phase masks than other types of algorithms. Finally,

reflective inverse diffusion has a potential application to dual photography, which

could finally lead to the coveted goal of seeing around corners.
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IV. Reflective Inverse Diffusion

4.1 Introduction

Reflective inverse diffusion is the effect that is achieved by wavefront shaping

algorithms that describes the refocusing of light reflected off of a rough surface. Re-

search of reflective inverse diffusion at AFIT has been motivated by applications to

Dual Photography, and a related technique called Indirect Photography [1]. Recent

research into reflective inverse diffusion has favored PWO as the wavefront shaping

algorithm due to the RM that it provides, which gives multiple-spot capabilities.

However, the average enhancement that phase masks found by PWO create is very

low compared to enhancements achieved by iterative methods. The use of a genetic

algorithm, an iterative algorithm, is discussed in this chapter. First, the equipment

used is described, followed by details of the experimental and simulated optical setups.

Next, the mathematical model describing the propagation of light in the system is

introduced. Finally, the settings and operation of the genetic algorithm are discussed,

followed by a report of the genetic algorithm’s performance.

4.2 Equipment

The SLM used was a Meadowlark Optics Reflective XY series model P512 SLM,

which has 512×512 square pixels, with a pixel pitch of 15µm for a total effective area

of 7.68mm × 7.68mm. Each pixel is capable of 16384 distinct phase levels between

0 and 2π. A manufacturer provided lookup table (LUT) mapped inputs for each

pixel to the correct output phase for each pixel. The SLM was controlled by libraries

provided by Meadowlark Optics. The camera used was a Thorlabs model 4070M-GE-

TE, which has 2048×2048 square pixels, with a pixel pitch of 7.4µm. The camera was

also controlled by desktop computer in Matlab R©, via a Gigabit Ethernet connection,
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using libraries provided by Thorlabs.

4.3 Optical Setups

Simulations.

The simulated environment matched the focal plane system setup used by Burgi

in the PWO simulations, shown in Figure 11, with Z1 = 15 cm, f = 500 mm, and

Z2 = 50 cm [19].

Laboratory.

The laboratory setup was a modified focal plane setup, simplified by removing the

beamsplitter, and adjusting the angle of the SLM, shown in Figure 13. The CCD was

Figure 13. Simplified focal plane setup used in reflective inverse diffusion experiments.
Polarized, collimated light is expanded and incident on the SLM at a slight angle. Light
reflected from the SLM is focused by lens L1 onto the scattering sample and reflected
to the CCD. In the lab, the incident angle of the beam onto the SLM, denoted θSLM
was 3.98◦ ± 0.01◦, while Z1 = 54± 0.5 cm, Z2 = 40± 0.5 cm, f = 400 mm.

placed at 90◦ ± 1◦ with respect to the light incident on the scattering sample, in the

specular region of the reflection from the scattering sample, at an angle of 45◦ ± 1◦

from the surface normal of the scattering sample. Additionally, a 400 mm lens was
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used, and new propagation distances Z1 and Z2 of 54± .5 and 40± .5 cm were used.

4.4 Mathematical Model

Diffraction Based Propagator.

To model the propagation of the light, a diffraction-based propagator was used.

The propagator was written by Burgi [1], based on Voelz’s Computational Fourier

Optics [20]. The simulation of the focal plane system begins at the SLM, where the

electric field is assumed to be a plane wave with unity amplitude, at normal incidence

on the SLM. The light propagates through free space before being reflected, then

propagated to a lens. The reflection is ignored in the simulation. The field just

before the lens, UL1 is given in Equation (20). Equation (20) is based on Equation

(12), where the source field is the field at the SLM, USLM .

UL1(x, y) = F−1[F [USLM(x, y)]H(fx, fy, Z1)], (20)

where the leading constant phase term from Equation (12) is neglected because it does

not impact the wavefront’s time-averaged value. Next, the light is focused down to a

diffraction-limited spot on the sample by a lens. The lens is large enough that all light

reflected off of the SLM passes through it, and the effects of a pupil function would

be negligible. This step is modeled by a Fourier transform with a scaled coordinate

transformation, due to the Fourier transform properties of lenses [3]. The field at the

sample plane, U−sample, prior to interaction with the surface is given by Equation (21).

U−sample(u, v) = e(i k
2f

(u2+v2))F [UL1(x, y)] (21)

where the new coordinates u and v are related to the spatial frequencies fx and fy

of UL1(x, y), (fx = u/(λf), fy = v/(λf)). Additionally, a constant phase term has
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again been removed. Next, the interaction of the sample and the light is modeled as

random phase shifts being applied at each spatial location in the modeled coordinate

space. The field at the sample just after reflection, U+
sample(u, v), is given by Equation

(22).

U+
sample(u, v) = U−sample(u, v)eiθ(u,v), (22)

where θ(u, v) represents the spatially varying phase shifts of scattering sample. Fi-

nally, once reflected, the light propagates to the CCD in the observation plane.

Rayleigh-Sommerfeld propagation is again used to model this propagation. Finally,

putting all steps of the propagation together, the Fourier transform of the lens in

Equation (21) cancels the inverse Fourier transform in Equation (20). The field at

the observation plane, Uobs is given by Equation (23):

Uobs(u, v) = F−1
[
F
{
e(i k

2f
(u2+v2))eiθ(u,v)F [F−1[F [USLM(x, y)]H(fx, fy, Z1)]]

}
H(fu, fv, Z2)

]
= F−1

[
F
{
e(i k

2f
(u2+v2))eiθ(u,v)F [USLM(x, y)]H(fx, fy, Z1)

}
H(fu, fv, Z2)

]
,

(23)

where e(i k
2f

(u2+v2))eiθ(u,v)F [USLM(x, y)]H(fx, fy, Z1) is the field at the sample, after

reflection.

Channel Size.

Choosing a proper size for CCD channels is important for being able to achieve

the highest possible enhancement. Ideally, the channel should be approximately the

same size as the diffraction-limited spot. The spot created after a beam with diameter

D is focused, shown in Figure 14, will have an approximate radius q1 at the focus of

that beam, given by Equation (24) [21],
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q1 ≈
2λf

D
. (24)

Figure 14. The diffraction limited spot size of a focused beam.

Under ideal circumstances, properly conjugated light will have a converging wave-

front when reflected off of a rough surface. That is, the rough surface acts as a lens.

In the focal plane system, this means that the beam is focused twice, once by lens L1,

and a second time by the scattering sample. To calculate the spot size, the proper

initial beam diameter to use is that of the SLM segments, rather than the entire

size of the reflected beam off of the SLM [17]. The predicted spot size, q2 at the

observation plane is given by Equation (25).

q2 ≈
Z2

f

DSLM

2
√
N
, (25)

where DSLM is the diameter of the SLM. In practice, it was found that the best

channel size was half of what is predicted in Equation (25) [1].

4.5 Genetic Algorithm

The algorithm used for iterative optimization was a genetic algorithm, adapted

from work by Conkey et al. for transmissive inverse diffusion. A population of P

solutions for the SLM phase mask is initially randomly generated. Each solution is
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ranked from best to worst in terms of fitness, which is chosen to be the enhancement

η achieved at a desired CCD channel. To calculate enhancement, the average inten-

sity within the channel is divided by the root mean square (RMS) intensity of the

background channels. The solutions themselves are discretized phase masks which

are applied to the SLM. Every new generation, G offspring are created by breeding G

pairs of parents from the population. Selection of solutions for breeding is probability

based, and solutions with higher fitness have a higher chance of being chosen. The

algorithm allows for a solution to be a parent in more than one pair, and a solution

is allowed breed with itself. Breeding, shown in Figure 15, creates offspring phase

masks by assigning half of the offspring’s segments the values of one parent, and the

remaining half the values of the other parent. To do this, a unique binary template is

created for each pair of parents. The template fills half of the elements of the offspring

with one parent’s corresponding array elements and the remaining empty elements

are filled by the other parent’s corresponding array elements. Next, a random mu-

tation of a proportion of the offspring elements occurs. This proportion is tapered

as iteration is continued so that fewer segments are being randomly mutated as the

solutions become more fine-tuned and large mutations would likely hurt fitness. The

mutation rate, R is given by Equation (26).

R = (R0 −Rend) exp(−n/d) +Rend, (26)

for initial mutation rate R0, final mutation rate Rend, generation number n, and decay

factor d.

Finally, the fitness of each offspring solution is measured and the offspring are

inserted into the population, giving the population P+G members. Before the next

generation of offspring are produced, the bottom G members of the population in

terms of fitness are removed, returning the population to P members. For the sim-
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Figure 15. The breeding process. Two phase masks from the population are chosen to
be parents with higher ranked phase masks more likely to be chosen. A random binary
template combines half of the elements from Parent 1 with half of the elements from
Parent 2 to create an offspring, which then undergoes an additional random mutation.
Each new offspring is generated in this way.

ulations, P = 30, G = 15, R0 = 0.1, Rend = 0.01, d = 1364/3. The values of these

parameters were based on the values used in Conkey’s paper [15]. The algorithm was

put through 1364 generations, that number being chosen because it is the number of

segments that must be optimized for the CSA to make a complete pass through an

SLM divided into 32× 32 segments along with preoptimization.

4.6 Algorithm Performances

Simulated Results.

The simulation settings were identical to those used by Burgi, when testing for

reduntant phase information in RMs [19]. The electric field is assumed to be a plane

wave with unity amplitude when incident upon the SLM, therefore the field at the

SLM is represented by a 512× 512 element matrix, with complex valued elements of

magnitude one. The reason for choosing 512× 512 is that is the number and size of

the SLM pixels. Each pixel is a square 15µm pixel, which makes the sampled area
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7.68 mm × 7.68 mm. Prior to propagation, zero padding was used to double the

dimensions of the sampled area at the SLM, to 15.36 mm × 15.36 mm at 1024×1024

points. From Equation (7) and the coordinate scaling of lens-based optical Fourier

transforms, the spacing of points on the reflector sample plane and on observation

plane is given by Equation (27).

∆u =
λf

Lx

∆v =
λf

Ly
,

(27)

where Lx and Ly are both 15.36mm, λ = 633nm, f = 500mm, making ∆u =

∆v = 20.61µm. This made the total lengths of the simulated sample and observation

planes Lu = Lv = 21.1mm. The sample was modeled as a unit amplitude field with

uniformly distributed phase shifts. Decorrelation was not included in the simulations.

The simulations were run in Matlab R© using a graphics processing unit (GPU)with

the GPU computing toolbox, which itself uses the NVIDIA CUFFT library which

is optimized for computing FFTs on a GPU. Commented code for the propagation

is available in Appendix A. The GA and PA were implemented with N = 16384,

or 128 × 128 segments, each four pixels, or 60µm wide, and a channel size of 2 × 2

points, or 41.22µm wide. The CSA was implemented with N = 1024, or 32 × 32

segments, each sixteen pixels, or 240µm wide and a channel size of 8 × 8 points, or

164.88µm wide. For the PA and CSA, 15 phase levels for each segment were used,

and for the GA, 15 offspring were generated each generation, making the number

of required intensity measurements for one iteration of the PA and CSA equal to

the required intensity measurements for a generation of the GA. The CSA was run

with one complete pass through the SLM divided into 32 × 32 segments, but with

preoptimization, which iterates through the SLM at 2× 2, 4× 4, 8× 8, and 16× 16

segments, in total, this required 1364 segment optimizations. The PA and GA were
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iterated 1364 times in order to match the number of required intensity measurements

of the CSA with preoptimization. Noise was simulated with a random 20µm (1 pixel)

vibration, as well as a random 5% error in the observed intensity at the observation

plane, and an error of π
4

of the phase for each SLM pixel. Additional time-dependent

decorrelation was not accounted for in the simulation. Commented code for the

iterative algorithm simulations is available in Appendix B.

Figure 16 shows iterative algorithm performance, averaged over five trials, com-

pared with the simulated performance of PWO with N = 1024 under identical ex-

perimental parameters [14]. Overall, the range of intensity measurements was not

Figure 16. Simulated performance of different reflective inverse diffusion algorithms.

sufficient for any of the algorithms to approach the maximum theoretical enhance-

ment of N predicted by Equation (19), which was 16364 for the PA and GA, and

1024 for the other methods. The GA immediately outperformed the other iterative

34



algorithms. Throughout the range of 1364 generations, the increase of enhancement

with the GA followed a linear trend, despite the mutation rate R, changing from 10%

to 1% over that time. The rate of increase of enhancement with the PA tapers off

despite no changes to the parameters of the algorithm itself as iterations continue.

Conkey’s simulated results showed that for the transmissive case, the enhancement

created by the CSA exhibited parabolic behavior with iteration, but at high noise

levels, the algorithm had trouble optimizing [15]. At 5100 intensity measurements,

preoptimization of the CSA finishes, and the 32 × 32 segment optimization begins.

There is an immediate increase in the amplitude of noise fluctuations. It appears

that the noise level is sufficiently high to flatten the parabolic behavior, as was seen

in Conkey’s experiments. The reason that the CSA has visible fluctuations while the

PA and GA monotonically increase is that it has no backtrack mechanism. Momen-

tary noise fluctuations cause unoptimal phase levels to appear to be better than the

true optimal levels. Without a backtrack mechanism, the algorithm cannot undo a

loss of enhancement caused by an unoptimal choice, so losses of enhancement remain

until the algorithm makes an entire pass through the SLM and has a chance to re-

optimize the unoptimized segment once more. PWO optimized to 1024 observation

plane channels simultaneously, giving a large quantity of information [14]. However,

at the 4104 intensity measurements required by PWO, the average channel enhance-

ment of η = 2.3 was outperformed by all iterative methods, which only optimized

to one channel. Interestingly, the channel with the maximum enhancement created

by PWO outperformed the CSA at an equal number of intensity measurements. Un-

fortunately, the enhancements created by each mask from PWO are not known until

measured, unlike the iterative algorithms which always have enhancement available.

Therefore, it is possible that PWO could create a better phase mask than the CSA

for a specific channel, but on average it will not. Further, it takes additional intensity
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measurements to determine the enhancement created by each mask that PWO finds,

which is not shown in Figure 16.

Experimental Results.

The GA, PA, and CSA were tested on a 600 grit polished nickel sample, as well

as a white, zinc oxide paint sample on glass. The optical setup was covered during

testing to prevent ambient light from being picked up by the camera and impacting

test results. Additionally, the laboratory lights were turned off during testing. No

vibration or other noise was intentionally added to the test environment. As in the

simulation, N = 16384 was used for the GA and PA, and N = 1024 was used for the

CSA. For the CSA and PA, 15 phase levels were used, and 15 offspring per iteration

were used by the GA. The time required to measure 1364 iterations for the algorithms

was approximately 100 minutes. Prior to beginning measurements, the equipment was

allowed to warm up for 1 hour.

Figure 17 shows the performances of the different algorithms averaged over five

trials. For the PA, and GA, the results show a small period of rapid increase, after

which the behaviors of the PA and GA follow the trends seen in simulation. The

small jump was more pronounced on the polished nickel than in the paint sample.

The CSA was unable to achieve any lasting increase of enhancement over the starting

value for both samples. Higher final enhancement is achieved by the GA and CSA

with the brushed nickel sample than with the paint sample. The final enhancement

achieved by the PA is also higher for the brushed nickel, but the results are within

the margin of error for both samples. PWO was not tested. However, for reference,

in a similar experiment, using the focal plane setup in Figure 11, the average and

maximum enhancement for the 600 grit sample using PWO were η = 1.3, and η = 6.0

respectively [14]. It is not clear why the CSA was unable to achieve any increase of
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enhancement, while the GA and PA were. The PA, which is conceptually very similar

to the CSA, tested the same 15 phase levels that the CSA used, and was able to

enhance the tested channel. Even during preoptimization, when simulation showed

lower noise amplitude, the CSA did not achieve any increases in the lab.

(a) (b)

Figure 17. Enhancement achieved using different techniques for reflective inverse dif-
fusion. In (a), the performance on 600 grit polished nickel is shown. In (b) the perfor-
mance on zinc oxide white paint is shown.

The system’s tendency to decorrelate with time was also investigated. The auto-

correlation of the samples is shown in Figures 18 (a) and (b). A randomized SLM

phase mask with N = 16384 was written to the SLM, and autocorrelation of the re-

sulting speckle intensity on the CCD was calculated over time. Prior to each intensity

measurement required for the autocorrelation calculation, the same SLM phase mask

was rewritten to the SLM. In (a) the correlation coefficient is computed beginning

at the time when the CCD, the SLM, and the laser are powered on. The correlation

coefficient decreases rapidly within the first hour that the equipment is powered on.
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After the first hour, the rate of decrease levels off to a comparatively slow pace. In

(b), the system has been allowed to warm up for 3 hours before autocorrelation is

calculated. The persistence time of the system, which is the time required for the

correlation coefficient to reach 1
e

of the initial value, depends on both the scattering

sample and how long the system has been allowed to warm up. The length of time

tested was not sufficient to determine the actual persistence times, Tp, for either of

the materials. However, relating the autocorrelation results to the iterative algo-

rithm tests, Tp must be much longer than the 100 minutes required by each algorithm

for 1364 iterations. This means that decorrelation did not significantly impact the

performance of the iterative algorithms.

(a) (b)

Figure 18. The autocorrelation of the field at the observation plane over time in
the focal plane system using both scattering samples. In (a) the autocorrelation is
computed starting at the time when all of the equipment is powered on. In (b) the
autocorrelation is computed starting after the equipment has warmed up for 3 hours.

4.7 Conclusions

In simulation, and in a controlled laboratory setting, iterative algorithms outper-

formed the average channel enhancement found by PWO. This was to be expected,

given the requirement that matrix methods have for a static medium. Overall, the

simulated results for the iterative algorithms predicted the general trends shown by
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the experimental results, with one large exception- the CSA was unable to perform

in the laboratory, likely due to a high level of noise. Nevertheless, the other al-

gorithms did perform. The GA was the best iterative algorithm over the range of

intensity measurements chosen. Impressively, the enhancement from the GA showed

linear growth over the entire range of measurement, indicating the potential for even

further increase of enhancement, though Conkey’s research showed that the rate of

increase of enhancement of the genetic algorithm does round off eventually [15].

Going forward, the GA has been shown to be well-suited for realistic laboratory

conditions, more so than other existing algorithms. However, further design testing

of the GA could still find design choices that would improve it. Based on the fact that

the core aspect of the GA is the breeding process, suggested test areas would involve

changing the processes for selection of parents, the selection of which segments each

parent provides the offspring, and the random mutation rate. In the next chapter,

which deals with non-mechanical beam steering, the refocused beams that the genetic

algorithm creates are the beams which are used in the testing of non-mechanical beam

steering.
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V. Non-Mechanical Beam Steering in Reflective Inverse
Diffusion

5.1 Introduction

In recent research, simulation has shown that there is redundant phase informa-

tion in reflection matrices [19]. Specifically, phase masks required to focus light onto

different channels in the observation plane share similarities. This is significant, be-

cause prior to this research, it was believed that unique phase masks were required

to focus to different points on the observation plane. The research showed this re-

dundant information by using PWO, which finds phase masks required to focus light

to every channel in the observation plane. When phase masks used to focus light to

adjacent channels on the observation plane were propagated to the rough sample in

simulation, the difference in the phases of the propagated waves was only a phase tilt.

This suggests that a phase mask could be decomposed into an underlying phase front

which conjugates the rough surface to create a focused beam and phase tilts that de-

termine where that beam goes. Phase tilts are the mechanism behind non-mechanical

beam steering. The simulations were applied to both the image plane, and focal plane

systems shown in Figures 11 and 12. The implications of this research were that a

reflection matrix could be constructed out of a single phase mask, which also means

that the ability to focus to one point on the observation plane gives the ability to

focus to other points as well. However, the reusability of a phase mask depends on

being able to create phase tilts at the scattering sample.

In this chapter, the process for performing non-mechanical beam steering of a

refocused beam in reflective diffusion is discussed. First, the creation of phase tilts

at the scattering sample is discussed, followed by a discussion of the required shifts

of the SLM phase mask. Next, limitations of the circular shift, which is used to
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shift the SLM phase mask, are discussed. Finally, the methods and results of the

non-mechanical beam steering procedure are reported.

5.2 Creating Phase Tilts at the Scattering Sample

Making phase tilts at the scattering sample depends on the optical setup being

used. The image plane system is a special case because the SLM is projected onto

the scattering sample. This means phase tilts at the SLM are directly projected to

the scattering sample [19], which in turn steers the enhanced spot in the observation

plane. For a focal plane system, the same relationship does not apply. However,

the propagation of light from the SLM to the scattering sample involves a Fourier

transform relationship. We recall the shift property of Fourier transforms in Equation

(4) indicates that a translation in one domain corresponds to a linear phase tilt in

the other. The Fourier transform occurs between the plane just prior to the lens,

to the surface of the scattering sample. A translation in the position of the field

incident on the lens, UL1 , would create a phase tilt at the spot on the scattering

sample, without moving that spot. Applying Equations (4) and (5) to Equation (20),

Equation (28) shows that a translation of the field in the plane of the SLM, USLM

would also translate the field at the lens, UL1 .

UL1(x, y) = F−1[F [USLM(x, y)]H(fx, fy, Z1)],

F [UL1(x, y)]e−i2π(fxa+fyb) = (F [USLM(x, y)]H(fx, fy, Z1))e−i2π(fxa+fyb),

F [UL1(x− a, y − b)] = F [USLM(x− a, y − b)]H(fx, fy, Z1),

UL1(x− a, y − b) = F−1[F [USLM(x− a, y − b)]H(fx, fy, Z1)], (28)

for shifts a and b. This means that a translation of USLM is required in order to

41



create a shift in UL1 , which will then create a phase tilt at the reflector. Beam

steering could not be used to translate UL1 , because although it could move where

the beam is incident on the lens, it would also introduce a tilt into the field, which,

again, by the shift theorem, would change the position of the focused spot on the

scattering sample. If the light incident on the scattering sample changes position,

the interaction as seen in Equation (22) will change, and any phase masks will be

invalidated [19].

(a) (b)

(c) (d)

Figure 19. Demonstration of different methods to create a shift in the field incident
on the lens. In (a) an unshifted SLM and the generated wavefront are shown. In
(b), a mechanical shift physically moves the SLM, and the wavefront. In (c) and (d)
the phase mask displayed by the SLM is shifted, which also shifts the wavefront with
reduced efficiency. In (c) the phase mask shift is a circular shift. In (d) the phase mask
shift is a linear shift, and vacated pixels are randomized.
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5.3 Creating Spot Displacement

It has been established that a translation of UL1 would require a translation of

the field at the plane of the SLM, USLM . This would require that the entire phase

mask generated by the SLM, represented by Figure 19 (a), be shifted in position and

still be illuminated. However, the SLM only modulates light where it has illuminated

pixels, and all illuminated pixels should already be used in the phase mask. Physically

translating the SLM using mechanical means would work to shift USLM , assuming the

laser source is large enough to completely illuminate the SLM after translation, as seen

in Figure 19 (b). Yet, there is a simpler solution that does not require any additional

equipment. Electronically, the phase mask displayed by the SLM can be shifted, but

because the SLM is finite, not all of the screen can be displayed. Additionally, this

means that only discrete shifts are allowed. When the phase mask on the SLM is

shifted, it leaves behind vacated pixels which are unoptimized, as seen in Figure 19

(c) and (d). There is no way to know what phase values to apply to vacated pixels

so that they are optimized to create enhancement at the new shifted spot. Yet, the

light which reflects off of them still contributes to the field at the observation plane,

so some consideration of what phase values to apply to them is needed. Vacated

pixels could simply be randomized, however they would then spread out the light

reflected off of them as background speckle in the observation plane. A better option

would be to somehow control the light that is reflected off of the vacated pixels so

that it does not add to the background. A circular shift of the SLM phase mask

achieves this purpose by reusing the portion of the phase mask which is shifted off

of the surface of the SLM, as seen in 19 (c). Elements 1-12 are shifted 1 position

down, while elements 13-16, with nowhere to go, are shifted three positions up to the

vacated positions. The field from elements 1-12 will propagate to the lens and will

have a phase tilt after being Fourier transformed; this will steer the chosen optimized
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spot in the observation plane. Elements 13-16 are still technically optimized to focus

to a spot, but they have a different shift, which means when the field from elements

13-16 propagates to the lens and is Fourier transformed, it will have a different tilt

than elements 1-12, and will be steered in another direction, and will not contribute to

background speckle. The downside of the circular shift is that though the energy does

not become randomly scattered as background, that energy is focused to a second,

undesired spot.

5.4 Limitations of the Circular Shift

Loss of Enhancement.

As mentioned in the previous section, using circular shifts creates vacated pix-

els which are not optimized to the new, displaced spot position, but instead, to a

secondary, undesired spot position. As the shift becomes larger, fewer and fewer pix-

els will actually be optimized to the desired spot, and instead, the energy will be

directed toward the undesired spot. Neglecting the contribution of a secondary, un-

wanted spot to the background intensity, if it is assumed that on average, each SLM

pixel contributes the same amount to the spot enhancement, then the shifted spot

enhancement will be proportional to the number of still-optimized pixels. Equation

(29) gives the upper limit of enhancement that can be created after a shift.

η = ηmax
Noptimized

N
(29)

where ηmax is the enhancement of the undisplaced spot, and Noptimized is the number

of segments, or fractions thereof that are optimized to the displaced spot.
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Discrete Displacement Size.

One limitation of non-mechanical translation of phase maps is that only discrete

pixel shifts are allowed. This means that only discrete phase tilts can be created, and

an enhanced spot can only be displaced to certain positions in the observation plane.

Assuming normal incidence and the focal plane system shown in Figure 11, the shift

theorem from Equation (4) indicates that a shift of the phase map of ∆y will produce

a phase tilt with a slope, mv, given in Equation (30) as,

mv = −2π

λf
∆y

(
radians

m

)
= −∆y

f
(unitless) .

(30)

The angle of this tilt, which shall be denoted θv is given in Equation (31) as

θv = tan−1(mv). (31)

Using the small angle approximation for the displacements on observation plane, the

displacement of the spot, ∆v is given by Equation (32) as

∆v = Z2θv, (32)

where θv is in radians, and Z2 is the distance from the scattering sample to the

observation plane. In Figure 13, the SLM is rotated with respect to the incident light

in order to send the reflected light to the lens L1, but this means that the surface of

the SLM is also rotated with respect to the surface of L1. For this reason, a correction

factor can be applied for horizontal shifts, which is along the x axis, whereas vertical

shifts are along the y axis, which is also the axis about which the SLM is rotated. The

45



vertical axis of the SLM is parallel to the vertical axis of the lens, so no projection

is necessary, but for the horizontal axis, a projection factor must be used, which

modifies Equation (30) and the subsequent equations appropriately. The slope of the

phase tilt when projection is accounted is given by Equation (33).

mu = −∆x

f
cos(θSLM), (33)

where θSLM is the angle between the plane of the lens, and the surface of the SLM.

5.5 Assessing Shift Performance

Circular Shift Procedure.

Phase maps were generated using the genetic algorithm described in Chapter IV.

The form in which the phase masks are sent to the SLM is as a 512×512 matrix. The

desired circular shift was applied to the phase mask matrix, then the shifted mask

was written to the SLM. The displacement of the spot in the observation plane was

dependent on the size of the circular shift of the phase mask and did not correspond

to the division of the observed area into channels. In order to accurately track the

position of the spot, an approximate displacement per shift was determined. Within

a square window two channels wide, centered on the estimated spot position, the

centroid of the intensity distribution was calculated. The new shifted channel of the

spot was centered on the calculated centroid. The intensity inside the shifted channel

was then used in the calculation of enhancement. The commented code for the beam

steering simulations is available in Appendix C.

The SLM matrix was shifted in increments of 16 positions. In simulation, the

SLM was shifted up to 256 positions in any direction. At that point, the number of

vacated pixels was equal to the number of optimized pixels, which created a secondary
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spot of equal enhancement as the primary, desired spot. In experiment, shifts from

five channels in the observation plane were tested. Four of the channels were at the

centers of each quadrant of the observation plane, and one channel was at the center of

the observation plane, as shown in Figure 20. This allowed for testing shifts multiple

times with different phase maps, without having to adjust the area of incidence of the

light onto the scattering sample. Shifts were limited to 208 positions in any direction

in laboratory experimentation, because full shifts to 256 positions caused the spot to

be displaced entirely off the screen of the CCD for the four corner channels. In the

laboratory experimentation, both the polished nickel, and the white paint samples

were tested.

Figure 20. Diagram of the locations of the five channels chosen for optimization in
laboratory experiments.

Simulated Results.

Figure 21 shows the displaced spot enhancement, normalized by the maximum

enhancement, η
ηmax

of the simulated focal plane system. The normalization allows

for better comparison between samples and simulation, where the ηmax is different.

A contour line at 0.2857 is included, because in the redundant phase information

paper, η > 100 was reported with displacements greater than 4mm, for ηmax =

350, which corresponds to 100
350

= 0.2857 [19]. The sampled area does not reach far
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enough along the u or v axes to show 4mm, but the distance along the diagonals is

greater than 4mm. It is worth noting that the decrease in enhancement as a function

of displacement is not circularly symmetrical. The contours extend along the axes

further than along the diagonals. Considering Equation (29), the number of optimized

segments determines the upper limit of enhancement. Therefore, considering only

movements along the axes are allowed, the Cartesian distance of a displacement is

not what determines the loss of enhancement, but rather the number of shifts of the

SLM in each direction in order to make that displacement.

Figure 21. Simulated enhancement of displaced spot as a two dimensional function of
displacement size after a circular shift of the SLM phase map, of focal plane system
shown in Figure 11. This demonstrates the simulated efficiency of using a single phase
map to create focused spots at different positions in the observation plane. Results
were averaged over 50 trials. The maximum value of η prior to normalization was
113± 5.
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Table 1. Predicted and Simulated Minimum Displacement Sizes

Displacement Type Equation (32) Predicted Experimental Displacement
∆u 15.00µm 14.99µm± 0.03µm
∆v 15.00µm 15.00µm± 0.03µm

In Table 1, the minimum possible displacements along each axis are shown along-

side the minimum shifts predicted by Equation (32). Because there was normal

incidence on the SLM in the simulated system, the predicted ∆u, and ∆v were the

same. The simulated results matched the expected results from Equation (32).

Figure 22. Simulated enhancement of displaced spot as a two dimensional function of
displacement size after a circular shift of the SLM phase map, of focal plane system
shown in Figure 11. The sample is placed 5mm past the focal plane of lens. The
decreased efficiency compared to Figure 21 demonstrates the impact of incorrect lens
placements, which result in decrease shift performance. Results were averaged over 50
trials. The maximum value of η prior to normalization was 109± 4.
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The effect of an error in the placement of a sample, such that the sample is not

precisely at the focus of the lens, was also investigated in simulation. This was done

by slightly modifying the propagator developed in section 4.3. Instead of modeling

the propagation of light from the lens to the sample as a Fourier transform, as shown

in Equation (21), it was modeled as a Fourier transform followed by a short Rayleigh-

Sommerfeld propagation. This modification changes the form of the field incident on

the sample, U−sample, which is now given by Equation (34), as

U−sample(u, v) = F−1[F [e(i k
2f

(u2+v2))F [UL1(x, y)]]H(fu, fv,∆Z)], (34)

where ∆Z is the distance the sample is displaced from the focus of the lens. Figure 22

shows the displaced spot enhancement, normalized by the maximum enhancement,

η
ηmax

of the simulated focal plane system, when the sample is placed 5mm past the

focal plane of the lens. We note that the maximum enhancement of the non-ideal

system is 109± whereas the maximum enhancement of the ideal system is 113 ± 5.

These values both fall within the common margins of error, so there was no statisti-

cally significant difference in the maximum enhancement achieved. In Figure 22, the

contour lines denoting values of 0.5, and 0.2857 are receded toward the center when

compared to Figure 21. The value of .2857 is achieved at approximately 3.6mm with

on-axis displacements. The cause of this decreased shift efficiency is the breakdown

of the Fourier transform relationship between the SLM phase mask and the field in-

cident on the sample. The phase angle of a linear phase tilt would cycle by linearly

increasing from −π to π, then instantaneously dropping back to −π. Figure 23 (a)

shows a phase tilt at the rough surface as phase angles. The phase tilts are created by

an 8-pixel horizontal shift of the SLM phase mask when ∆Z = 0. The phase angles

are extracted by calculating the difference between the unshifted field phase and the

shifted field phase at the sample. Figure 23 (b) also shows a phase tilt due to an
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(a) (b)

(c) (d)

Figure 23. Difference between phase angles of the electric field at the rough surface.
In (a) and (b), the difference is between an unshifted phase mask and a phase mask
horizontally shifted by eight pixels on the SLM for a sample (a) at the lens’ focal plane
and (b) 5mm past the lens’ focal plane. In (c) and (d), the difference is between an
unshifted phase mask and a phase mask horizontally shifted by 32 pixels on the SLM
for a sample (c) at the lens’ focal plane and (d) 5mm past the lens’ focal plane. Beneath
each phase map, in orange, is a vertically-average phase profile. A comparison of (a)
and (b) to (c) and (d) shows that increased shift size decreases the range of the phase
angle fluctuations from the ideal −π to π. A comparison of (a) and (c) to (b) and (d)
shows that rounding of the phase profile corners occurs when the sample is not at the
focus.
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8-pixel horizontal shift of the SLM phase mask, when ∆Z = 5mm. Figures 23 (c)

and (d) both show the extracted phase tilts for a 32-pixel horizontal shift of the SLM

phase mask for ∆Z = 0, and ∆Z = 5mm respectively. As expected, the larger shift

of the SLM phase mask creates steeper phase tilts at the sample when compared to

(a) and (b). Figure 23 shows two trends which are degrading the ideal form of the

linear phase tilt. The first trend is that increasing the shift size appears to decrease

the range of the phase angle cycle. In Figures 23 (a) and (b), which were created by

8-pixel shifts, the range of the phase values almost covers the possible range of −π to

π, whereas Figures 23 (c) and (d) show visibly decreased ranges. The second trend

is that moving the sample from the focus of the lens causes rounding of the corners

of the phase profile, as seen in Figures 23 (b) and (d). However, the rounding of the

corners also appears to reduce ringing effects at those corners. This is to be expected

because ringing is created when a Fourier series attempts to recreate a discontinuity,

or sharp jump in a signal, and is lacking necessary high-frequency components.

Experimental Results.

Figures 24 and 25 show the normalized experimental enhancements of the polished

nickel and paint samples respectively, normalized, and as functions of displacement

size. These results validate the simulations which show that a single phase mask

could be reused to focus to multiple points, for a focal plane system.

The nickel sample experiences a rather uniform and gradual decrease of enhance-

ment as displacement increases. The distance at which the enhancement decreases

by 50% along the u axis is approximately 1.39mm ± 0.13mm. Along the v axis,

the distance for 50% decrease is approximately 1.42mm ± 0.12mm. Then, the dis-

tance at which enhancement decreases by 75% along the u axis is at approximately

2.5mm ± 0.3mm, and along the v axis, it is approximately 2.7mm ± 0.12mm. The
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Figure 24. Experimental enhancement of displaced spot as a two dimensional function
of displacement size after a circular shift of the SLM phase map, of focal plane system
shown in Figure 13 for 600 grit polished nickel. Results were averaged over five trials.
The maximum value of η prior to normalization was 89.9± 1.5.

paint sample dropped rapidly to 50% enhancement at .23mm± 0.11mm along the u

axis, and by .24mm ± 0.12mm along the v axis. However, the subsequent decrease

by 75% occurs at 1.6mm±0.11 along the u axis, and at 1.07mm±0.12mm along the

v axis. Aside from the rapid drop off to 50%, the paint sample is also asymmetrical

between the axes. Overall, enhancement drops with displacement of the refocused

spot faster in experiment than in in the simulations. This could be explained in part

by a larger error in the placement of the sample with respect to the focal plane of

the lens than was accounted for in the simulations. The reason that this is possi-

ble is because in simulation, the light is normally incident on the rough surface. In
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Figure 25. Experimental enhancement of displaced spot as a two dimensional function
of displacement size after a circular shift of the SLM phase map, of focal plane system
shown in 13 zinc oxide paint, on glass. Results were averaged over five trials. The
maximum value of η prior to normalization was 80± 3.

experiment, the light was obliquely incident on the scattering sample at a 45◦ angle

from the surface normal, with a horizontal plane of incidence. Because of the oblique

incidence, the distance that different parts of the wavefront have to travel in order

to contact the surface are different. It is also likely that the oblique incidence of the

light is related to the horizontally elongated shape of the contours on the white paint

sample. Other than surface height and slope variations, the main difference between

the nickel sample and the paint sample is that the nickle sample is a surface scatterer

while the paint sample is more of a bulk scatterer.

Table 2 shows the experimental and expected displacements based on Equation
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(32). The displacement size along the v axis, which is the axis parallel to the SLM’s

y axis falls within the predicted range of Equation (32). The displacement along the

u axis, conversely does not fall within the range predicted by Equation (32). It is

difficult to draw conclusions from this result, because for one sample, the value is

over the estimate and for the other sample, the value is under the estimate; other-

wise, the testing parameters were the same. Some uncertainty about the process of

creating displacement may be attributable to fact that the u axis is within the plane

of incidence of the light. However, a displacement of the sample from the focal plane

of the lens may degrade the form of the phase tilts, which was shown in Figure 23.

By degrading the phase tilts, the relationship in Equation (33) may not be valid.

Table 3 shows various surface properties of the two scattering samples tested

based on profilometer data. Looking at the samples independently, both correlation

length metrics, lc, and lλ/2, are positively correlated. Roughness and slope are also

positively correlated. Roughness and slope together are negatively correlated to both

correlation length metrics. Because all four properties are somewhat redundant, only

the roughness of the samples will be considered for analysis. Now, comparing Table

2 to Table 3, one possible trend is a link between smaller mean displacements and

lower roughness, for a given sample. The nickel sample created smaller displacements

along the v axis, where it had a smaller roughness, and likewise, the paint sample

created smaller displacements along the u axis, where it had smaller roughness. This

result seems counterintuitive, and additional testing would be prudent before any

Table 2. Predicted and Tested Minimum Mean Displacement Sizes

Displacement Type Equation (32) Predicted Tested Displacement
Nickel ∆u 15.0µm± 0.4µm 15.85µm± 0.01µm
Nickel ∆v 15.0µm± 0.4µm 14.83µm± 0.01µm
Paint ∆u 15.0µm± 0.4µm 14.3µm± 0.01µm
Paint ∆v 15.0µm± 0.4µm 14.88µm± 0.01µm
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Table 3. Surface properties of scattering samples, from a profilometer. Roughness
is the standard deviation of surface height. lc is the distance required to shift the
autocorrelation of the surface height profile by 1/e. Slope is the RMS surface slope.
lλ/2 is the distance required to create a height change of λ/2 assuming the surface has
a linear slope with the value of the RMS slope.

Sample, axis Roughness Correlation, lc Slope Correlation lλ/2
600-grit Nickel, u 0.50µm 12.25µm 0.086 3.69µm
600-grit Nickel, v 0.40µm 19.75µm 0.046 6.82µm

White Paint on Glass, u 0.67µm 22.25µm 0.080 3.96µm
White Paint on Glass, v 0.75µm 17.75µm 0.092 3.45µm
600-grit Nickel, average 0.45µm 16µm 0.066 4.79µm

White Paint on Glass, average 0.71µm 20µm 0.086 3.69µm

claims about the cause should be made. With respect to Figures 24 and 25, the

nickel sample has a lower roughness, which could be linked to the slower falloff of the

enhancement with displacement, however, the surface properties do not explain why

the paint sample’s enhancement drops off so quickly initially, or why the shape of the

contours are not symmetric about the axes.

5.6 Conclusions

True non-mechanical beam steering while performing reflective inverse diffusion

was demonstrated for a focal plane system. This validates Burgi’s conclusions from

the simulations which showed that redundant phase information is contained within

the RM of PWO. The ability to beam steer means that there is no longer a need to

completely restart iterative algorithms when attempting to focus to different chan-

nels in the observation plane. However, the effectiveness of using circular shifts for

beam steering is dependent on a precise Fourier transform relationship that requires

accurate placement of a lens with respect to a rough surface. Additionally, the cir-

cular shift itself is not the ideal solution for beam steering because it leaves vacated

pixels unoptimized. The use of the circular shift was meant to show that there is

56



information contained in a single phase mask that allows for refocusing to more than

one position. As a quick first approximation, the circular shift can be used for beam

steering without requiring any additional calculations or measurements, but a more

complete solution could incorporate simulations and measurements in real time. Us-

ing the concept of Dynamic Data Driven Application Systems (DDDAS) [22], the

same GPUs which can run simulations of reflective inverse diffusion could be used to

run smart algorithms which analyze measured data in real time to find optimal phase

masks faster than simple feedback schemes currently allow. Ideally, a DDDAS inte-

grated algorithm would be able to give predicts the modified phase masks required to

focus to different points better than a circular shift. Finally, one result that was not

fully explained was the behavior of the paint sample compared to the nickel sample.

Because the surface height and slope, from Table 3 did not explain the discrepancy,

the best explanation for this effect is that nickel is a surface scatterer, and paint is a

bulk scatterer. It is possible that the non-uniform bulk scatter in the paint sample

degrades the Fourier transform relationship between the field at the SLM and the

surface. The shape of the contours for the paint sample are likely related to the

oblique incidence of the light on the sample, but is not clear what mechanism cause

the horizontal axis to support displacements better than the vertical axis.
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VI. Conclusion

6.1 Research Summary

The stated objective of this research was to demonstrate that in wavefront shaping,

one phase mask is capable of being repurposed to refocus light in reflective inverse

diffusion in more than one direction.

This research investigated several iterative algorithms for wavefront shaping, and

has demonstrated the effectiveness of Conkey’s genetic algorithm (GA) for use in

reflective inverse diffusion. The GA is a robust algorithm that can perform under

noisy conditions. Even under controlled laboratory conditions which limited noise,

the GA outperformed the other existing iterative algorithms. Next, the ability to

beam steer a single enhanced spot created by a single phase mask was demonstrated.

This was done by applying circular shifts to the SLM phase mask.

The combined impact of these two rather tangential topics is that a new process

whereby one (or perhaps several, if need be) continually improving phase maps can

be found through iterative means, which can at any time steer their refocused beams

to scan across an area. Alternatively, a single phase map could be used to construct

an entire reflection matrix (RM).

6.2 Acknowledgements

This research was largely a follow-on study of the redundant phase information

found in RMs by Burgi [19]. Additionally, this research builds on the foundation in

reflective inverse diffusion research he previously laid, which includes results, but also

technical expertise, practical proficiency, and even Matlab R© code.
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6.3 Future Work

This research has improved one of the methods used for achieving reflective inverse

diffusion, which is an essential operation in the process of seeing around corners. The

other main operation in the process of seeing around corners will be using the light

in reflective inverse diffusion for dual photography.

However, before reflective inverse diffusion is applied to dual photography, wave-

front shaping techniques must still be tested and improved. First, the proposed

process of creating an RM using circular shifts in a focal plane system on a single

phase map must still be tested, and as discussed in Chapters IV and V, there are

areas of future work within the performance of the GA itself, and in improvements

that could be made to the type of shift that is applied to the SLM in order to beam

steer.

Construction of an RM.

The first continuation of this research could be the construction of reflection ma-

trices. This would not be without difficulty, because the range over which circular

shifts create an enhanced spot with an acceptable level of enhancement did not fill

the entire surface of the CCD. To remedy this problem, it may be necessary to find a

patchwork pattern of phase maps, each mapping to a separate location on the CCD

such as in Figure 20. These patchwork phase maps could be optimized simultaneously

in some kind of alternating fashion, essentially in parallel, or they could be optimized

individually, in a sequence. Design and testing of actual methods to create RMs,

which answer these questions is needed.
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Phase Mask Interpolation.

Given the need to develop an RM, a technique which interpolates phase masks

based on multiple known phase masks could be attempted. This method would

work in the focal plane system, because phase masks to adjacent channels have been

shown to contain redundant phase information. This is true for the phase map for

each channel, and is therefore also true for non-adjacent phase maps. The concept

of phase mask interpolation would use this principle so that if two phase masks to

non-adjacent channels were known, the phase mask of a channel in between could

be found by combining portions of the known masks. In terms of the circular shift,

which was discussed in Chapter V, knowledge of multiple close by phase masks could

provide the information about what values to assign to vacated pixels, when using a

shift. In theory, phase mask interpolation would be superior to circular shifts, because

it would provide the necessary phase information to use in the vacated pixels.

Integration of Measurements and Simulations.

Though Conkey’s genetic algorithm is currently the best iterative algorithm tested

for reflective inverse diffusion, improvements must still be made to increase the speed

of the algorithm. Currently, the genetic algorithm, like other iterative algorithms,

uses a very simple feedback system that requires no computational power. However,

ample computational power is available and is not being used. As mentioned in

Chapter V, the integration of measurements and simulations in real time could allow

for algorithms that can predict optimal phase masks. Specifically, a combination of

simulated propagation of the SLM to the scattering sample, and back-propagation

of the CCD’s intensity map to the scattering sample would give information about

the electric field before and after reflection from the scattering sample, and a phase

retrieval algorithm could be used to make guesses about the surface height properties
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of the scattering sample in real time.

A Lensless Setup.

An important finding from Chapter V was that the efficiency of using circular

shifts depended on a precise placement of the sample at the focal plane. Though the

lens creates a Fourier transform relationship that allows for easy non-mechanical beam

steering, it may also be a liability due to the need for precise lens-sample placement,

and the limited range of frequency components that can be created with the Fourier

transform of a finite signal (as evidenced by ringing effects in Figure 23). Figure 26

shows the results of preliminary testing of a lensless system. The genetic algorithm

was used with the 600-grit polished nickel sample in the optical setup from Figure

13, only with the lens removed from the system. SLM segments two pixels, or 30µm

wide were modulated, focusing to a CCD channel two pixels, or 14.8µm wide. Figure

26 demonstrates that it is possible to use a lensless system to create reflective inverse

diffusion, and future work could explore the merits of a lensless system compared to

the focal plane and imaging plane systems.
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Figure 26. Experimental genetic algorithm performance in a lensless system, using the
600 grit polished nickel sample. The optical setup was identical to the setup used in
Figure 13, except that the lens was removed from the system.
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Appendix A. Rayleigh-Sommerfeld Diffraction Propagator
in Matlab R©

The following code models the propagation of light from the SLM to the observa-

tion plane, as described in Section 4.3 for the system seen in Figure 11.

SLM propagation function

function [Uobs,Uminus,Uplus,dx3] = PropagateSLM(input,z1,focus,z2,sample,a,recalc)

persistent prevZ1 prevF prevZ2 prevM prevN prevA pad

persistent x3 chirp dx1

persistent Hslm2lens Hsample2ccd

if nargin<7

recalc=0;

elseif nargin<6

a=2;

recalc=0;

elseif nargin<5

sample=1;

a=2;

recalc=0;

end

[m,n]=size(input);

M=a*m;

[msample,nsample]=size(sample);

if msample~=1 || nsample~=1

if a*m~=msample && a*n~=nsample

error(’sample incorrect size’)

end

end

if isempty(prevZ1) %|| isempty(prevZ2) || isempty(prevM) || isempty(prevN)

recalc=1;

prevZ1=0;

prevF=0;

prevZ2=0;

prevM=0;

prevN=0;

prevA=0;

elseif z1~=prevZ1 || focus~=prevF || z2~=prevZ2 || m~=prevM || n~=prevN || a~=prevA

recalc=1;
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end

if recalc

display(’recalculating’);

lambda=633*10^-9; % HeNe wavelength

k=2*pi/lambda; % Propagation number

D=0.00768; % BNS SLM dimension

L1=a*D; % Length of SLM plane (including zero pad)

% SLM plane coordinates

dx1=L1/M; % SLM pixel size

x1=-L1/2:dx1:L1/2-dx1;

[X1,Y1]=meshgrid(x1); % SLM pixel coordinates

% propagation Transfer Function - SLM to Lens

fx2=(-M/2:M/2-1)*1/L1; % range of sampled frequencies

[FX2,FY2]=meshgrid(fx2); % Sampled frequency space coordinates

Hslm2lens=exp(1i*k*z1*sqrt(1-(lambda*FX2).^2-(lambda*FY2).^2)); %Rayleigh-Sommerfeld Transfer function

% sample plane

dx3=lambda*focus/L1;

L3=lambda*focus/dx1; % Length of sample plane

x3=-L3/2:dx3:L3/2-dx3;

[X3,Y3]=meshgrid(x3); %sample plane coordinate grid

% Fraunhofer chirp

chirp=exp(1i*k/(2*focus)*(X3.^2+Y3.^2));

% propagation Transfer Function - sample to CCD

fx4=(-M/2:M/2-1)*1/L3;

[FX4,FY4]=meshgrid(fx4);

Hsample2ccd=exp(1i*k*z2*sqrt(1-(lambda*FX4).^2-(lambda*FY4).^2));

prevZ1=z1;

prevF=focus;

prevZ2=z2;

prevM=m;

prevN=n;

prevA=a;

pad=gather((M-m)/2);
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end

u1=padarray(input,[pad,pad]); % SLM field

Uminus=chirp.*fftshift(fft2(fftshift(u1)))*dx1^2.*Hslm2lens;

% Field just prior to the sample

Uplus=sample.*Uminus;

% Field after interaction with sample

Uobs=fftshift(ifft2(fft2(fftshift(Uplus)).*fftshift(Hsample2ccd)));

% Field at Observation plane

end
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Appendix B. Iterative Algorithm Simulations in Matlab R©

The following code was used to simulate the iterative algorithms for reflective

inverse diffusion, as discussed in Chapter IV. The intensity at the observation plane

was calculated by the propagator in Appendix A.

2.1 Continuous Sequential Algorithm

Propagation Parameters.

lambda=gpuArray(633*10^-9); % HeNe wavelength

k=gpuArray(2*pi/lambda); % Propagation number

slmpix=gpuArray(512); % Number of physical SLM pixels

a=gpuArray(2); % zeropad factor

IObsdim=gpuArray(2048); % Dimension of camera pixels

D=gpuArray(0.00768); % SLM side length;

dx1=gpuArray(D/slmpix); %SLM delta x

x1=gpuArray(((-slmpix/2):(slmpix/2-1))*dx1); % SLM coordinate array

flens=gpuArray(0.5); % positive lens focal length flens=0.2;

z1=gpuArray(0.15); % distance from SLM to the lens z1=0.3;

z2=gpuArray(0.5); % distance from reflector to CCD z2=0.4;

dx2=lambda*flens/(a*D); % Sample pixel size

x2=((-a*slmpix/2):(a*slmpix/2-1))*dx2; % Sample coordinate array

SLM Settings & CCD Settings.

SLMdimension=gpuArray(32);

SLMchannels=SLMdimension^2;

CCDdimension=gpuArray(128);

CCDchannels=CCDdimension^2;

Noise Settings.

JitterSpace=gpuArray(1); % size of vibrations in elements shifted

SampleDimension=slmpix*a; % Dimension of scattering sample

CCDerror=gpuArray(0.05); % intensity measurement error in percent

SLMerror=gpuArray(pi/4); % SLM error in radian

Determine Observation plane windowing.

%chooses the window over which to calculate the background intensity

s1=gpuArray(129);s2=gpuArray(1024-128);s3=s1;s4=s2;
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Iterative Optimization to Test Channel.

SLM1=ExpImage(2*pi*rand(slmpix,’gpuArray’),[slmpix slmpix]); % Random initial guess for SLM phase

%CCD Channels

TestChannel=(CCDdimension+1)*CCDdimension/2;% Center

%TestChannel=(CCDdimension+1)*CCDdimension/4*3;% bottom right

%TestChannel=(CCDdimension+1)*CCDdimension/4+CCDdimension/2;% bottom left

%TestChannel=(CCDdimension+1)*CCDdimension/4;% top left

%TestChannel=(CCDdimension+1)*CCDdimension/4*3-CCDdimension/2;% top right

[ChannelMask,BackgroundMask]=ChannelMasks(TestChannel,CCDdimension,(1024));

% Phase Levels

PhaseSpacing=gpuArray(15); % Number of phase levels

PhaseValue=2*pi/PhaseSpacing*((-PhaseSpacing/2):(PhaseSpacing/2-1)); % values of the phase levels

kmax=log(SLMchannels)/log(4); % The number of times the CSA will run through the SLM Counting preoptimization

Performance=zeros(1,1364,’gpuArray’);

Generate a random sample.

Jsample=exp(1i*2*pi*rand(SampleDimension+2*JitterSpace,’gpuArray’));

Iterations Begin.

for k=1:kmax

N=2^(2*k);

for n=1:N

ChannelEnhance=zeros(length(PhaseValue),1,’gpuArray’);

SLMmask=ChannelMasks(n,sqrt(N),slmpix);

for p=1:length(PhaseValue)

SLM1(SLMmask)=PhaseValue(p);

SLMnoise=SLMerror*rand(size(SLM1),’gpuArray’)-SLMerror/2;

% simulation optics table vibration

% Uniform Distribution

Jx=randi(2*JitterSpace+1,’gpuArray’)-(JitterSpace+1);

Jy=randi(2*JitterSpace+1,’gpuArray’)-(JitterSpace+1);

% Apply the jitter to the sample

JstartX=JitterSpace+Jx+1;JstopX=JitterSpace+Jx+SampleDimension;

JstartY=JitterSpace+Jy+1;JstopY=JitterSpace+Jy+SampleDimension;

sample=Jsample(JstartX:JstopX,JstartY:JstopY);
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% Calculate Intensity at observation plane, with added error

Uobs=10^6*PropagateSLM(gpuArray(exp(1i*SLM1+SLMnoise)),z1,flens,z2,sample,a);

CCDnoise=-CCDerror*rand(size(Uobs),’gpuArray’)+1;

Iobs=CCDnoise.*abs(Uobs).^2;

% Use only the portion of the Observation plane where there is a

% speckle field

WindowIobs=Iobs(s1:s2,s1:s2);

WindowsBmask=BackgroundMask(s1:s2,s1:s2);

%Calculate the channel enhancement for the current phase value

ChannelEnhance(p)=sqrt(WeightedIntensity2(Iobs(ChannelMask),2048/CCDdimension))/

sqrt(mean(WindowIobs(WindowsBmask).^2));

clear Iobs CCDnoise JstartY JstartX Jy Jx SLMnoise WindowIobs WindowBmask

end

[~,idx]=max(ChannelEnhance); % Identify the best phase level

SLM1(SLMmask)=PhaseValue(idx); % Set SLM segment to best phase level

Performance(n+sum(2.^(2*(1:k-1))))=max(ChannelEnhance); % Keep track of the algorithm performance

end

end

2.2 Partitioning Algorithm

Propagation Parameters.

lambda=gpuArray(633*10^-9); % HeNe wavelength

k=gpuArray(2*pi/lambda); % Propagation number

slmpix=gpuArray(512); % Number of physical SLM pixels

a=gpuArray(2); % zeropad factor

IObsdim=gpuArray(2048); % Dimension of camera pixels

D=gpuArray(0.00768); % SLM side length;

dx1=gpuArray(D/slmpix); %SLM delta x

x1=gpuArray(((-slmpix/2):(slmpix/2-1))*dx1); % SLM coordinate array

flens=gpuArray(0.5); % positive lens focal length flens=0.2;

z1=gpuArray(0.15); % distance from SLM to the lens z1=0.3;

z2=gpuArray(0.5); % distance from reflector to CCD z2=0.4;

dx2=lambda*flens/(a*D); % Sample pixel size
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x2=((-a*slmpix/2):(a*slmpix/2-1))*dx2; % Sample coordinate array

SLM Settings & CCD Settings.

SLMdimension=gpuArray(128);

SLMchannels=SLMdimension^2;

CCDdimension=gpuArray(512);

CCDchannels=CCDdimension^2;

Noise Settings.

JitterSpace=gpuArray(1); % size of vibrations in elements shifted

SampleDimension=slmpix*a; % Dimension of scattering sample

CCDerror=gpuArray(0.05); % intensity measurement error in percent

SLMerror=gpuArray(pi/4); % SLM error in radian

Determine Observation plane windowing.

%chooses the window over which to calculate the background intensity

s1=gpuArray(129);s2=gpuArray(1024-128);s3=s1;s4=s2;

Iterative Optimization to TestChannel.

SLM1=ExpImage(2*pi*rand(slmpix,’gpuArray’),[slmpix slmpix]); % Random initial guess for SLM phase

PrevSLM=SLM1;

PrevEnhancement=gpuArray(0);

%CCD Channels

TestChannel=(CCDdimension+1)*CCDdimension/2;% Center

%TestChannel=(CCDdimension+1)*CCDdimension/4*3;% bottom right

%TestChannel=(CCDdimension+1)*CCDdimension/4+CCDdimension/2;% bottom left

%TestChannel=(CCDdimension+1)*CCDdimension/4;% top left

%TestChannel=(CCDdimension+1)*CCDdimension/4*3-CCDdimension/2;% top right

[ChannelMask,BackgroundMask]=ChannelMasks(TestChannel,CCDdimension,(1024)); %s2-s1+1

% Phase Levels

PhaseSpacing=gpuArray(15); % Number of phase levels

PhaseValue=2*pi/PhaseSpacing*((-PhaseSpacing/2):(PhaseSpacing/2-1)); % values of the phase levels

Generate a random sample.

Jsample=exp(1i*2*pi*rand(SampleDimension+2*JitterSpace,’gpuArray’));
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Iterations begin.

K=1364; % Number of iterations

Performance=zeros(1,K,’gpuArray’);

for n=1:K

ChannelEnhance=zeros(length(PhaseValue),1,’gpuArray’);

SLMmask=rand(SLMdimension,’gpuArray’)<rand(1)/2;

% Creates index mask to access the elements of the SLM to be modulated

SLMmask=gpuArray(imresize(gather(SLMmask),gather(slmpix/SLMdimension),’nearest’));

for p=1:length(PhaseValue)

SLM1(SLMmask)=PhaseValue(p);

SLMnoise=SLMerror*rand(size(SLM1),’gpuArray’)-SLMerror/2;

% simulation optics table vibration

% Uniform Distribution

Jx=randi(2*JitterSpace+1,’gpuArray’)-(JitterSpace+1);

Jy=randi(2*JitterSpace+1,’gpuArray’)-(JitterSpace+1);

% Apply the jitter to the sample

JstartX=JitterSpace+Jx+1;JstopX=JitterSpace+Jx+SampleDimension;

JstartY=JitterSpace+Jy+1;JstopY=JitterSpace+Jy+SampleDimension;

sample=Jsample(JstartX:JstopX,JstartY:JstopY);

% Calculate Intensity at observation plane, with added error

Uobs=10^6*PropagateSLM(gpuArray(exp(1i*SLM1+SLMnoise)),z1,flens,z2,sample,a);

CCDnoise=-CCDerror*rand(size(Uobs),’gpuArray’)+1;

Iobs=CCDnoise.*abs(Uobs).^2;

% Use only the portion of the Observation plane where there is a

% speckle field

WindowIobs=Iobs(s1:s2,s1:s2);

WindowsBmask=BackgroundMask(s1:s2,s1:s2);

%Calculate the channel enhancement for the current phase value

ChannelEnhance(p)=sqrt(WeightedIntensity2(Iobs(ChannelMask),2048/CCDdimension))/

sqrt(mean(WindowIobs(WindowsBmask).^2));

clear Iobs CCDnoise JstartY JstartX Jy Jx SLMnoise WindowIobs WindowBmask

end
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% Backtrack mechanism- does not implement changes, unless there is an

% improvement of enhancement

if max(ChannelEnhance)>PrevEnhancement

[~,idx]=max(ChannelEnhance);

SLM1(SLMmask)=PhaseValue(idx);

PrevSLM=SLM1;

PrevEnhancement=max(ChannelEnhance);

else

SLM1=PrevSLM;

end

Performance(n)=PrevEnhancement; % Keep track of performance

end

2.3 Genetic Algorithm

Propagation Parameters.

lambda=gpuArray(633*10^-9); % HeNe wavelength

k=gpuArray(2*pi/lambda); % Propagation number

slmpix=gpuArray(512); % Number of physical SLM pixels

a=gpuArray(2); % zeropad factor

IObsdim=gpuArray(2048); % Dimension of camera pixels

D=gpuArray(0.00768); % SLM side length;

dx1=gpuArray(D/slmpix); %SLM delta x

x1=gpuArray(((-slmpix/2):(slmpix/2-1))*dx1); % SLM coordinate array

flens=gpuArray(0.5); % positive lens focal length flens=0.2;

z1=gpuArray(0.15); % distance from SLM to the lens z1=0.3;

z2=gpuArray(0.5); % distance from reflector to CCD z2=0.4;

dx2=lambda*flens/(a*D); % Sample pixel size

x2=((-a*slmpix/2):(a*slmpix/2-1))*dx2; % Sample coordinate array

SLM Settings & CCD Settings.

SLMdimension=gpuArray(128);

SLMchannels=SLMdimension^2;

CCDdimension=gpuArray(512);

CCDchannels=CCDdimension^2;
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Noise Settings.

JitterSpace=gpuArray(1); % size of vibrations in elements shifted

SampleDimension=slmpix*a; % Dimension of scattering sample

CCDerror=gpuArray(0.05); % intensity measurement error in percent

SLMerror=gpuArray(pi/4); % SLM error in radian

Determine Observation plane windowing.

%chooses the window over which to calculate the background intensity

s1=gpuArray(129);s2=gpuArray(1024-128);s3=s1;s4=s2;

Optimization to test channel.

TestChannel=(CCDdimension+1)*CCDdimension/2;% Center

%TestChannel=(CCDdimension+1)*CCDdimension/4*3;% bottom right

%TestChannel=(CCDdimension+1)*CCDdimension/4+CCDdimension/2;% bottom left

%TestChannel=(CCDdimension+1)*CCDdimension/4;% top left

%TestChannel=(CCDdimension+1)*CCDdimension/4*3-CCDdimension/2;% top right

[ChannelMask,BackgroundMask]=ChannelMasks(TestChannel,CCDdimension,(1024)); %s2-s1+1

GA Parameters:.

P=gpuArray(30); % Population size

G=gpuArray(15); % Number of offspring each generation

R0=gpuArray(.1); % Initial mutation rate - fraction of "mutated" segments in offspring

Rend=gpuArray(.01); % Final Mutation rate

K=gpuArray(1364);

Performance=zeros(1,gather(K));

df=K/3; % Decay Factor

Generate initial population.

Comment out if initial population already exists

Population_SLM=2*pi*rand(SLMdimension,SLMdimension,P,’gpuArray’);

Population_SLM=imresize(gather(Population_SLM),gather(slmpix/SLMdimension),’nearest’); %Units are radians

Jsample=exp(1i*2*pi*rand(SampleDimension+2*JitterSpace,’gpuArray’)); % uniform distribution

\subsection*{Measure Initial population}

Fitness=zeros(1,P,’gpuArray’);

for i=1:P
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% SLM phase error

SLMnoise=SLMerror*rand(size(Population_SLM(:,:,i)),’gpuArray’)-SLMerror/2;

% simulation optics table vibration

% Uniform distributed Jitter

Jx=randi(2*JitterSpace+1,’gpuArray’)-(JitterSpace+1);

Jy=randi(2*JitterSpace+1,’gpuArray’)-(JitterSpace+1);

% Apply the jitter to the sample

JstartX=JitterSpace+Jx+1;JstopX=JitterSpace+Jx+SampleDimension;

JstartY=JitterSpace+Jy+1;JstopY=JitterSpace+Jy+SampleDimension;

sample=Jsample(JstartX:JstopX,JstartY:JstopY);

% Calculate Intensity at observation plane, with added error

Uobs=10^6*PropagateSLM(gpuArray(exp(1i*Population_SLM(:,:,i)+SLMnoise)),z1,flens,z2,sample,a);

CCDnoise=-CCDerror*rand(size(Uobs),’gpuArray’)+1;

Iobs=CCDnoise.*abs(Uobs).^2;

% Use only the portion of the Observation plane where there is a

% speckle field

WindowIobs=Iobs(s1:s2,s1:s2);

WindowsBmask=BackgroundMask(s1:s2,s1:s2);

%Calculate fitness of current population member

Fitness(i)=sqrt(WeightedIntensity2(Iobs(ChannelMask),slmpix*a/CCDdimension))

/sqrt(mean(WindowIobs(WindowsBmask).^2));

clear Iobs CCDnoise sample JstartY JstartX Jy Jx SLMnoise WindowIobs WindowBmask

end

% Sort the SLM screens by fitness

[Fitness,fitorder]=sort(Fitness,’descend’);

Population_SLM(:,:,:)=Population_SLM(:,:,fitorder);

Iterations Begin.

for n=1:K % n is the generation number

Offspring_SLM=zeros(slmpix,slmpix,G,’gpuArray’);

for i=1:G

% Chose parents - Higher rank has higher weighted chance
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ParentIndices=randsample(P,2,true,(P:-1:1).^X); % Linear Weights

% Generate binary template

Template=rand(SLMdimension,’gpuArray’);

Template=imresize(gather(Template),gather(slmpix/SLMdimension),’nearest’);

Template=Template>.5;

Offspring_SLM(:,:,i)=Population_SLM(:,:,ParentIndices(1)).*Template

+Population_SLM(:,:,ParentIndices(2)).*(1-Template);

% Generate mutation template

Template=rand(SLMdimension,’gpuArray’);

Template=imresize(gather(Template),gather(slmpix/SLMdimension),’nearest’);

Template=Template<(R0-Rend)*exp(-n/df)+Rend;

Mutation=2*pi*rand(SLMdimension,’gpuArray’);

Mutation=imresize(gather(Mutation),gather(slmpix/SLMdimension),’nearest’);

% in radians

%Mutate offspring

Offspring_SLM(:,:,i)=Offspring_SLM(:,:,i).*(1-Template)+Mutation.*(Template);

end

% measure cost

Offspring_Fitness=zeros(1,G,’gpuArray’);

for i=1:G

% SLM phase error

SLMnoise=SLMerror*rand(size(Offspring_SLM(:,:,i)),’gpuArray’)-SLMerror/2;

% simulation optics table vibration

% Uniform Distribution

Jx=randi(2*JitterSpace+1,’gpuArray’)-(JitterSpace+1);

Jy=randi(2*JitterSpace+1,’gpuArray’)-(JitterSpace+1);

% Apply the jitter to the sample

JstartX=JitterSpace+Jx+1;JstopX=JitterSpace+Jx+SampleDimension;

JstartY=JitterSpace+Jy+1;JstopY=JitterSpace+Jy+SampleDimension;

sample=Jsample(JstartX:JstopX,JstartY:JstopY);

% Calculate Intensity at observation plane, with added error
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Uobs=10^6*PropagateSLM(gpuArray(exp(1i*Offspring_SLM(:,:,i)+SLMnoise)),z1,flens,z2,sample,a);

CCDnoise=-CCDerror*rand(size(Uobs),’gpuArray’)+1;

Iobs=CCDnoise.*abs(Uobs).^2;

% Use only the portion of the Observation plane where there is a

% speckle field

WindowIobs=Iobs(s1:s2,s1:s2);

WindowsBmask=BackgroundMask(s1:s2,s1:s2);

%Calculate current offspring fitness

Offspring_Fitness(i)=sqrt(WeightedIntensity2(Iobs(ChannelMask),2048/

CCDdimension))/sqrt(mean(WindowIobs(WindowsBmask).^2));

clear Iobs CCDnoise JstartY JstartX Jy Jx SLMnoise WindowIobs WindowBmask

end

% Replace lowest ranked masks with new generation of G offspring

Population_SLM(:,:,P-G+1:end)=gather(Offspring_SLM);

Fitness(P-G+1:end)=Offspring_Fitness;

clear Offspring_SLM

% Sort new population of phase screens SLM by fitness

[Fitness,fitorder]=sort(Fitness,’descend’);

Population_SLM(:,:,:)=Population_SLM(:,:,fitorder);

Performance(n)=gather(max(Fitness)); % Keep track of the algorithm performance

clear sample

end

75



Appendix C. Beam Steering Simulations in Matlab R©

The following code was used to simulate the beam steering process, as discussed in

Chapter V. The intensity at the observation plane was calculated by the propagator

in Appendix A.

Initialization.

% Initialize matrices to store information

EnhancementMatrix=zeros(33);

Xmatrix=EnhancementMatrix;

Ymatrix=EnhancementMatrix;

PhiMatrix=EnhancementMatrix;

dxMatrix=EnhancementMatrix;

dyMatrix=EnhancementMatrix;

increment=16; % SLM pixel shift size

m=0;

for i = -256:increment:256 % Range of shifts

for j= -256:increment:256

Measure Intensity at observation plane.

% SLM phase error

SLMnoise=SLMerror*rand(size(Population_SLM(:,:,1)),’gpuArray’)-SLMerror/2;

% simulation optics table vibration

%Uniform Distribution

Jx=randi(2*JitterSpace+1,’gpuArray’)-(JitterSpace+1);

Jy=randi(2*JitterSpace+1,’gpuArray’)-(JitterSpace+1)

% Apply the jitter to the sample

JstartX=JitterSpace+Jx+1;JstopX=JitterSpace+Jx+SampleDimension;

JstartY=JitterSpace+Jy+1;JstopY=JitterSpace+Jy+SampleDimension;

sample=Jsample(JstartX:JstopX,JstartY:JstopY);

% Calculate Intensity at observation plane, with added error

Uobs=10^6*PropagateSLM(indexshift(gpuArray(exp(1i*Population_SLM(:,:,1)+SLMnoise)),i,j),z1,flens,z2,sample,a);

CCDnoise=-CCDerror*rand(size(Uobs),’gpuArray’)+1;

Iobs=CCDnoise.*abs(Uobs).^2;
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Determine where the shifted spot has gone.

% Location not known a priori, requiring estimates

ShiftedChannelMask=indexshift(ChannelMask,round(-i*.725),round(-j*.725));

% Rough estimation for the shift location- Hard coded in, will differ for various setups

% Integration area around the estimated shift location

BallparkMask=ExpandChannel(ShiftedChannelMask,3,CCDdimension,length(Iobs));

IntegrationArea=Iobs.*BallparkMask; % Zero out all other elements outside integration area for measurement

[~,A]=max(IntegrationArea(:));

maxx=round(A/(length(Iobs)))+1; % x coordinate of the maximum within the ballpark area of the peak

maxy=rem(A,(length(Iobs))); % y coordinate of the maximum within the ballpark area of the peak

% Create new integration mask centered on the peak pixel within the

% integration area

[MaxShiftMask,~]=ChannelMasks2(maxy,maxx,CCDdimension,length(Iobs)); % Mask centered on maximum value

MaxShiftMask=ExpandChannel(MaxShiftMask,1.5,CCDdimension,length(Iobs));

% Calculate the centroid, and other beam parameters of the spot...

% Ref ISO11146-1

CPUIobs=gather(Iobs);

% calculate x,y coordinates of centroid, as well as spot size/rotation

[x,y,~,~,~,phi,dx,dy]=ISOintegrals(CPUIobs.*MaxShiftMask,1,length(Iobs),1,length(Iobs));

% Round the centroid coordinates to nearest pixels

x=ceil(x);

y=ceil(y);

% Create a channel mask for the shifted channel, centered at the

% calculated centroid

[FinalMask,FinalBackgroundMask]=ChannelMasks2(y,x,CCDdimension,length(Iobs));

% Final mask on the newly calculated x and y coordinates of the spot

Calculate Enhancement of Shifted spot.

% Use only the portion of the Observation plane where there is a

% speckle field

WindowIobs=CPUIobs(s1:s2,s1:s2);
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WindowsBmask=FinalBackgroundMask(s1:s2,s1:s2);

% Store the calculated values

index1=i/increment+ceil(length(EnhancementMatrix)/2);

index2=j/increment+ceil(length(EnhancementMatrix)/2);

EnhancementMatrix(index1,index2)=(sqrt(mean(CPUIobs(FinalMask)).^2))/sqrt(mean(WindowIobs(WindowsBmask).^2));

Xmatrix(index1,index2)=x;

Ymatrix(index1,index2)=y;

PhiMatrix(index1,index2)=phi;

dxMatrix(index1,index2)=dx;

dyMatrix(index1,index2)=dy;

m=m+1;

end

end
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