126 research outputs found

    Albuminuria Testing in Hypertension and Diabetes:An Individual-Participant Data Meta-Analysis in a Global Consortium

    Get PDF
    Albuminuria is an under-recognized component of chronic kidney disease definition, staging, and prognosis. Guidelines, particularly for hypertension, conflict on recommendations for urine albumin-to-creatinine ratio (ACR) measurement. Separately among 1 344 594 adults with diabetes and 2 334 461 nondiabetic adults with hypertension from the chronic kidney disease Prognosis Consortium, we assessed ACR testing, estimated the prevalence and incidence of ACR ≥30 mg/g and developed risk models for ACR ≥30 mg/g. The ACR screening rate (cohort range) was 35.1% (12.3%-74.5%) in diabetes and 4.1% (1.3%-20.7%) in hypertension. Screening was largely unrelated to the predicted risk of prevalent albuminuria. The median prevalence of ACR ≥30 mg/g across cohorts was 32.1% in diabetes and 21.8% in hypertension. Higher systolic blood pressure was associated with a higher prevalence of albuminuria (odds ratio [95% CI] per 20 mm Hg in diabetes, 1.50 [1.42-1.60]; in hypertension, 1.36 [1.28-1.45]). The ratio of undetected (due to lack of screening) to detected ACR ≥30 mg/g was estimated at 1.8 in diabetes and 19.5 in hypertension. Among those with ACR/g, the median 5-year incidence of ACR ≥30 mg/g across cohorts was 23.9% in diabetes and 21.7% in hypertension. Incident albuminuria was associated with initiation of renin-angiotensin-aldosterone system inhibitors (incidence-rate ratio [95% CI], diabetes 3.09 [2.71-3.53]; hypertension 2.87 [2.29-3.59]). In conclusion, despite similar risk of albuminuria to those with diabetes, ACR screening in patients with hypertension was low. Our findings suggest that regular albuminuria screening should be emphasized to enable early detection of chronic kidney disease and initiation of treatment with cardiovascular and renal benefits

    Randomized Trial of Anticoagulation Strategies for Noncritically Ill Patients Hospitalized With COVID-19.

    Get PDF
    BACKGROUND Prior studies of therapeutic-dose anticoagulation in patients with COVID-19 have reported conflicting results. OBJECTIVES We sought to determine the safety and effectiveness of therapeutic-dose anticoagulation in noncritically ill patients with COVID-19. METHODS Patients hospitalized with COVID-19 not requiring intensive care unit treatment were randomized to prophylactic-dose enoxaparin, therapeutic-dose enoxaparin, or therapeutic-dose apixaban. The primary outcome was the 30-day composite of all-cause mortality, requirement for intensive care unit-level of care, systemic thromboembolism, or ischemic stroke assessed in the combined therapeutic-dose groups compared with the prophylactic-dose group. RESULTS Between August 26, 2020, and September 19, 2022, 3,398 noncritically ill patients hospitalized with COVID-19 were randomized to prophylactic-dose enoxaparin (n = 1,141), therapeutic-dose enoxaparin (n = 1,136), or therapeutic-dose apixaban (n = 1,121) at 76 centers in 10 countries. The 30-day primary outcome occurred in 13.2% of patients in the prophylactic-dose group and 11.3% of patients in the combined therapeutic-dose groups (HR: 0.85; 95% CI: 0.69-1.04; P = 0.11). All-cause mortality occurred in 7.0% of patients treated with prophylactic-dose enoxaparin and 4.9% of patients treated with therapeutic-dose anticoagulation (HR: 0.70; 95% CI: 0.52-0.93; P = 0.01), and intubation was required in 8.4% vs 6.4% of patients, respectively (HR: 0.75; 95% CI: 0.58-0.98; P = 0.03). Results were similar in the 2 therapeutic-dose groups, and major bleeding in all 3 groups was infrequent. CONCLUSIONS Among noncritically ill patients hospitalized with COVID-19, the 30-day primary composite outcome was not significantly reduced with therapeutic-dose anticoagulation compared with prophylactic-dose anticoagulation. However, fewer patients who were treated with therapeutic-dose anticoagulation required intubation and fewer died (FREEDOM COVID [FREEDOM COVID Anticoagulation Strategy]; NCT04512079).Dr Stone has received speaker honoraria from Medtronic, Pulnovo, Infraredx, Abiomed, and Abbott; has served as a consultant to Daiichi-Sankyo, Valfix, TherOx, Robocath, HeartFlow, Ablative Solutions, Vectorious, Miracor, Neovasc, Ancora, Elucid Bio, Occlutech, CorFlow, Apollo Therapeutics, Impulse Dynamics, Cardiomech, Gore, Amgen, Adona Medical, and Millennia Biopharma; and has equity/ options from Ancora, Cagent, Applied Therapeutics, Biostar family of funds, SpectraWave, Orchestra Biomed, Aria, Cardiac Success, Valfix, and Xenter; his daughter is an employee at IQVIA; and his employer, Mount Sinai Hospital, receives research support from Abbott, Abiomed, Bioventrix, Cardiovascular Systems Inc, Phillips, BiosenseWebster, Shockwave, Vascular Dynamics, Pulnovo, and V-wave. Dr Farkouh has received institutional research grants from Amgen, AstraZeneca, Novo Nordisk, and Novartis; has received consulting fees from Otitopic; and has received honoraria from Novo Nordisk. Dr Lala has received consulting fees from Merck and Bioventrix; has received honoraria from Zoll Medical and Novartis; has served on an advisory board for Sequana Medical; and is the Deputy Editor for the Journal of Cardiac Failure. Dr Moreno has received honoraria from Amgen, Cuquerela Medical, and Gafney; has received payment for expert testimony from Koskoff, Koskoff & Dominus, Dallas W. Hartman, and Riscassi & Davis PC; and has stock options in Provisio. Dr Goodman has received institutional research grants from Bristol Myers Squibb/Pfizer Alliance, Bayer, and Boehringer Ingelheim; has received consulting fees from Amgen, Anthos Therapeutics, AstraZeneca, Bayer, Boehringer Ingelheim, Bristol Myers Squibb, CSL Behring, Ferring Pharmaceuticals, HLS Therapeutics, Novartis, Pendopharm/Pharmascience, Pfizer, Regeneron, and Sanofi; has received honoraria from Amgen, AstraZeneca, Bayer, Boehringer Ingelheim, Bristol Myers Squibb, Eli Lilly, Ferring Pharmaceuticals, HLS Therapeutics, JAMP Pharma, Merck, Novartis, Pendopharm/Pharmascience, Pfizer, Regeneron, Sanofi, and Servier; has served on Data Safety and Monitoring boards for Daiichi-Sankyo/American Regent and Novo Nordisk A/C; has served on advisory boards for Amgen, AstraZeneca, Bayer, Boehringer Ingelheim, Bristol Myers Squibb, CSL Behring, Eli Lilly, Ferring Pharmaceuticals, HLS Therapeutics, JAMP Pharma, Merck, Novartis, Pendopharm/Pharmascience, Pfizer, Regeneron, Sanofi, Servier, and Tolmar Pharmaceuticals; has a leadership role in the Novartis Council for Heart Health (unpaid); and otherwise has received salary support or honoraria from the Heart and Stroke Foundation of Ontario/University of Toronto (Polo) Chair, Canadian Heart Failure Society, Canadian Heart Research Centre and MD Primer, Canadian VIGOUR Centre, Cleveland Clinic Coordinating Centre for Clinical Research, Duke Clinical Research Institute, New York University Clinical Coordinating Centre, PERFUSE Research Institute, and the TIMI Study Group (Brigham Health). Dr Ricalde has received consulting fees from Medtronic, Servier, and Boston Scientific; has received honoraria from Medtronic, Pfizer, Merck, Boston Scientific, Biosensors, and Bayer; has served on an advisory board for Medtronic; and has leadership roles in SOLACI and Kardiologen. Dr Payro has received consulting fees from Bayer Mexico; has received honoraria from Bayer, Merck, AstraZeneca, Medtronic, and Viatris; has received payments for expert testimony from Bayer; has received travel support from AstraZeneca; has served on an advisory board for Bayer; and his institution has received equipment donated from AstraZeneca. Dr Castellano has received consulting fees and honoraria from Ferrer International, Servier, and Daiichi-Sankyo; and has received travel support from Ferrer International. Dr Hung has served as an advisory board member for Pfizer, Merck, AstraZeneca, Fosun, and Gilead. Dr Nadkarni has received consulting fees from Renalytix, Variant Bio, Qiming Capital, Menarini Health, Daiichi-Sankyo, BioVie, and Cambridge Health; has received honoraria from Daiichi-Sankyo and Menarini Health; has patents for automatic disease diagnoses using longitudinal medical record data, methods, and apparatus for diagnosis of progressive kidney function decline using a machine learning model, electronic phenotyping technique for diagnosing chronic kidney disease, deep learning to identify biventricular structure and function, fusion models for identification of pulmonary embolism, and SparTeN: a novel spatio-temporal deep learning model; has served on a Data Safety and Monitoring Board for CRIC OSMB; has leadership roles for Renalytix scientific advisory board, Pensive Health scientific advisory board, and ASN Augmented Intelligence and Digital Health Committee; has ownership interests in Renalytix, Data2Wisdom LLC, Verici Dx, Nexus I Connect, and Pensieve Health; and his institution receives royalties from Renalytix. Dr Goday has received the Frederick Banting and Charles Best Canada Graduate Scholarship (Doctoral Research Award) from the Canadian Institutes of Health Research. Dr Furtado has received institutional research grants from AstraZeneca, CytoDin, Pfizer, Servier, Amgen, Alliar Diagnostics, and the Brazilian Ministry of Health; has received consulting fees from Biomm and Bayer; has received honoraria from AstraZeneca, Bayer, Servier, and Pfizer; and has received travel support from Servier, AstraZeneca, and Bayer. Dr Granada has received consulting fees, travel support, and stock from Cogent Technologies Corp; and has received stock from Kutai. Dr Contreras has served as a consultant for Merck, CVRx, Novodisk, and Boehringer Ingelheim; and has received educational grants from Alnylam Pharmaceuticals and AstraZeneca. Dr Bhatt has received research funding from Abbott, Acesion Pharma, Afimmune, Aker Biomarine, Amarin, Amgen, AstraZeneca, Bayer, Beren, Boehringer Ingelheim, Boston Scientific, Bristol Myers Squibb, Cardax, CellProthera, Cereno Scientific, Chiesi, Cincor, CSL Behring, Eisai, Ethicon, Faraday Pharmaceuticals, Ferring Pharmaceuticals, Forest Laboratories, Fractyl, Garmin, HLS Therapeutics, Idorsia, Ironwood, Ischemix, Janssen, Javelin, Lexicon, Lilly, Medtronic, Merck, Moderna, MyoKardia, NirvaMed, Novartis, Novo Nordisk, Owkin, Pfizer Inc, PhaseBio, PLx Pharma, Recardio, Regeneron, Reid Hoffman Foundation, Roche, Sanofi, Stasys, Synaptic, The Medicines Company, Youngene, and 89bio; has received royalties from Elsevier; has received consultant fees from Broadview Ventures and McKinsey; has received honoraria from the American College of Cardiology, Baim Institute for Clinical Research, Belvoir Publications, Boston Scientific, Cleveland Clinic, Duke Clinical Research Institute, Mayo Clinic, Mount Sinai School of Medicine, Novartis, Population Health Research Institute, Rutgers University, Canadian Medical and Surgical Knowledge Translation Research Group, Cowen and Company, HMP Global, Journal of the American College of Cardiology, K2P, Level Ex, Medtelligence/ReachMD, MJH Life Sciences, Oakstone CME, Piper Sandler, Population Health Research Institute, Slack Publications, WebMD, Wiley, Society of Cardiovascular Patient Care; has received fees from expert testimony from the Arnold and Porter law firm; has received travel support from the American College of Cardiology, Society of Cardiovascular Patient Care, American Heart Association; has a patent for otagliflozin assigned to Brigham and Women’s Hospital who assigned to Lexicon; has participated on a data safety monitoring board or advisory board for Acesion Pharma, Assistance Publique-Hôpitaux de Paris, AngioWave, Baim Institute, Bayer, Boehringer Ingelheim, Boston Scientific, Cardax, CellProthera, Cereno Scientific, Cleveland Clinic, Contego Medical, Duke Clinical Research Institute, Elsevier Practice Update Cardiology, Janssen, Level Ex, Mayo Clinic, Medscape Cardiology, Merck, Mount Sinai School of Medicine, MyoKardia, NirvaMed, Novartis, Novo Nordisk, PhaseBio, PLx Pharma, Regado Biosciences, Population Health Research Institute, and Stasys; serves as a trustee or director for American College of Cardiology, AngioWave, Boston VA Research Institute, Bristol Myers Squibb, DRS.LINQ, High Enroll, Society of Cardiovascular Patient Care, and TobeSoft; has ownership interests in AngioWave, Bristol Myers Squibb, DRS.LINQ, and High Enroll; has other interests in Clinical Cardiology, the NCDR-ACTION Registry Steering Committee; has conducted unfunded research with FlowCo and Takeda, Contego Medical, American Heart Association Quality Oversight Committee, Inaugural Chair, VA CART Research and Publications Committee; and has been a site co-investigator for Abbott, Biotronik, Boston Scientific, CSI, St Jude Medical (now Abbott), Phillips SpectraWAVE, Svelte, and Vascular Solutions. Dr Fuster declares that he raised $7 million from patients for this study granted to Mount Sinai Heart, unrelated to industry. All other authors have reported that they have no relationships relevant to the contents of this paper to disclose.S

    Conversion of Urine Protein-Creatinine Ratio or Urine Dipstick Protein to Urine Albumin-Creatinine Ratio for Use in Chronic Kidney Disease Screening and Prognosis : An Individual Participant–Based Meta-analysis

    Get PDF
    Financial Support: The CKD-PC Data Coordinating Center is funded in part by a program grant from the U.S. National Kidney Foundation and the National Institute of Diabetes and Digestive and Kidney Diseases (R01DK100446). Various sources have supported enrollment and data collection, including laboratory measurements and follow-up, in the collaborating cohorts of the CKD-PC. These funding sources include government agencies, such as national institutes of health and medical research councils, as well as the foundations and industry sponsors listed in Supplemental Appendix 3 (available at Annals.org).Peer reviewedPostprin

    Global, regional, and national burden of chronic kidney disease, 1990–2017 : a systematic analysis for the Global Burden of Disease Study 2017

    Get PDF
    Background Health system planning requires careful assessment of chronic kidney disease (CKD) epidemiology, but data for morbidity and mortality of this disease are scarce or non-existent in many countries. We estimated the global, regional, and national burden of CKD, as well as the burden of cardiovascular disease and gout attributable to impaired kidney function, for the Global Burden of Diseases, Injuries, and Risk Factors Study 2017. We use the term CKD to refer to the morbidity and mortality that can be directly attributed to all stages of CKD, and we use the term impaired kidney function to refer to the additional risk of CKD from cardiovascular disease and gout. Methods The main data sources we used were published literature, vital registration systems, end-stage kidney disease registries, and household surveys. Estimates of CKD burden were produced using a Cause of Death Ensemble model and a Bayesian meta-regression analytical tool, and included incidence, prevalence, years lived with disability, mortality, years of life lost, and disability-adjusted life-years (DALYs). A comparative risk assessment approach was used to estimate the proportion of cardiovascular diseases and gout burden attributable to impaired kidney function. Findings Globally, in 2017, 1·2 million (95% uncertainty interval [UI] 1·2 to 1·3) people died from CKD. The global all-age mortality rate from CKD increased 41·5% (95% UI 35·2 to 46·5) between 1990 and 2017, although there was no significant change in the age-standardised mortality rate (2·8%, −1·5 to 6·3). In 2017, 697·5 million (95% UI 649·2 to 752·0) cases of all-stage CKD were recorded, for a global prevalence of 9·1% (8·5 to 9·8). The global all-age prevalence of CKD increased 29·3% (95% UI 26·4 to 32·6) since 1990, whereas the age-standardised prevalence remained stable (1·2%, −1·1 to 3·5). CKD resulted in 35·8 million (95% UI 33·7 to 38·0) DALYs in 2017, with diabetic nephropathy accounting for almost a third of DALYs. Most of the burden of CKD was concentrated in the three lowest quintiles of Socio-demographic Index (SDI). In several regions, particularly Oceania, sub-Saharan Africa, and Latin America, the burden of CKD was much higher than expected for the level of development, whereas the disease burden in western, eastern, and central sub-Saharan Africa, east Asia, south Asia, central and eastern Europe, Australasia, and western Europe was lower than expected. 1·4 million (95% UI 1·2 to 1·6) cardiovascular disease-related deaths and 25·3 million (22·2 to 28·9) cardiovascular disease DALYs were attributable to impaired kidney function. Interpretation Kidney disease has a major effect on global health, both as a direct cause of global morbidity and mortality and as an important risk factor for cardiovascular disease. CKD is largely preventable and treatable and deserves greater attention in global health policy decision making, particularly in locations with low and middle SDI

    The Polygenic and Monogenic Basis of Blood Traits and Diseases

    Get PDF
    Blood cells play essential roles in human health, underpinning physiological processes such as immunity, oxygen transport, and clotting, which when perturbed cause a significant global health burden. Here we integrate data from UK Biobank and a large-scale international collaborative effort, including data for 563,085 European ancestry participants, and discover 5,106 new genetic variants independently associated with 29 blood cell phenotypes covering a range of variation impacting hematopoiesis. We holistically characterize the genetic architecture of hematopoiesis, assess the relevance of the omnigenic model to blood cell phenotypes, delineate relevant hematopoietic cell states influenced by regulatory genetic variants and gene networks, identify novel splice-altering variants mediating the associations, and assess the polygenic prediction potential for blood traits and clinical disorders at the interface of complex and Mendelian genetics. These results show the power of large-scale blood cell trait GWAS to interrogate clinically meaningful variants across a wide allelic spectrum of human variation. Analysis of blood cell traits in the UK Biobank and other cohorts illuminates the full genetic architecture of hematopoietic phenotypes, with evidence supporting the omnigenic model for complex traits and linking polygenic burden with monogenic blood diseases
    corecore