987 research outputs found

    From genome to toxicity: a combinatory approach highlights the complexity of enterotoxin production in Bacillus cereus

    Get PDF
    In recent years Bacillus cereus has gained increasing importance as a food poisoning pathogen. It is the eponymous member of the Bacillus cereus sensu lato group that consists of eight closely related species showing impressive diversity of their pathogenicity. The high variability of cytotoxicity and the complex regulatory network of enterotoxin expression have complicated efforts to predict the toxic potential of new Bacillus cereus isolates. In this study, comprehensive analyses of enterotoxin gene sequences, transcription, toxin secretion and cytotoxicity were performed. For the first time, these parameters were compared in a whole set of Bacillus cereus strains representing isolates of different origin (food or food poisoning outbreaks) and of different toxic potential (enteropathogenic and apathogenic) to elucidate potential starting points of strain-specific differential toxicity. While toxin gene sequences were highly conserved and did not allow for differentiation between high and low toxicity strains, comparison of nheB and hblD enterotoxin gene transcription and Nhe and Hbl protein titers revealed not only strain-specific differences but also incongruence between toxin gene transcripts and toxin protein levels. With one exception all strains showed comparable capability of protein secretion and so far, no secretion patterns specific for high and low toxicity strains were identified. These results indicate that enterotoxin expression is more complex than expected, possibly involving the orchestrated interplay of different transcriptional regulator proteins, as well as posttranscriptional and posttranslational regulatory mechanisms plus additional influences of environmental conditions

    Reversible cation exchange on macroscopic CdSe/CdS and CdS nanorod based gel networks

    Get PDF
    Over the past decades, cation exchange reactions applied to nanoparticles have opened up synthetic pathways to nanocrystals, which were not accessible by other means before. The limitation of cation exchange on the macroscopic scale of bulk materials is given by the limited ion diffusion within the crystal structure. Lyogels or aerogels are macroscopic, highly voluminous, porous materials composed of interconnected nanoscopic building blocks and hence represent a type of bridge between the macroscopic and the nanoscopic world. To demonstrate the feasibility of cation exchange on such macroscopic nanomaterials, the cation exchange on CdSe/CdS core/shell and CdS nanorod based lyogels to Cu2−xSe/ Cu2−xS and Cu2−xS and the reversible exchange back to CdSe/CdS and CdS lyogels is presented. These copper-based lyogels can also be used as an intermediate state on the way to other metal chalcogenidebased macroscopic structures. By reversed cation exchange back to cadmium an additional proof is given, that the crystal structures remain unchanged. It is shown that cation exchange reactions can also be transferred to macroscopic objects like aerogels or lyogels. This procedure additionally allows the access of aerogels which cannot be synthesized via direct destabilization of the respective colloidal solutions

    Disturbed neuronal ER-Golgi sorting of unassembled glycine receptors suggests altered subcellular processing is a cause of human hyperekplexia.

    Get PDF
    Recent studies on the pathogenic mechanisms of recessive hyperekplexia indicate disturbances in glycine receptor (GlyR) α1 biogenesis. Here, we examine the properties of a range of novel glycine receptor mutants identified in human hyperekplexia patients using expression in transfected cell lines and primary neurons. All of the novel mutants localized in the large extracellular domain of the GlyR α1 have reduced cell surface expression with a high proportion of receptors being retained in the ER, although there is forward trafficking of glycosylated subpopulations into the ER-Golgi intermediate compartment and cis-Golgi compartment. CD spectroscopy revealed that the mutant receptors have proportions of secondary structural elements similar to wild-type receptors. Two mutants in loop B (G160R, T162M) were functional, but none of those in loop D/β2-3 were. One nonfunctional truncated mutant (R316X) could be rescued by coexpression with the lacking C-terminal domain. We conclude that a proportion of GlyR α1 mutants can be transported to the plasma membrane but do not necessarily form functional ion channels. We suggest that loop D/β2-3 is an important determinant for GlyR trafficking and functionality, whereas alterations to loop B alter agonist potencies, indicating that residues here are critical elements in ligand binding.This work was supported by the Deutsche Forschungsgemeinschaft (Grant DFG VI586 to C.V.) and the European Union (FP7 project Neurocypres to C.J.K., K.L.P., and S.C.R.L.). N. Schaefer and G.L. are supported by the GSLS Wuerzburg. S.C.R.L. is a Wellcome Trust Senior Research Fellow in Basic Biomedical Research.This is the author accepted manuscript. The final version is available from the Society of Neuroscience via http://dx.doi.org/10.1523/JNEUROSCI.1509-14.201

    Concerted measurements of lipids in seawater and on submicron aerosol particles at the Cape Verde Islands: biogenic sources, selective transfer and high enrichments

    Get PDF
    Measurements of lipids as representative species for different lipid classes in the marine environment have been performed to characterize their oceanic sources and their transfer from the ocean into the atmosphere to marine aerosol particles. To this end, a set of lipid classes (hydrocarbons (HC), fatty acid methyl esters (ME), free fatty acids (FFA), alcohols (ALC), 1, 3-diacylglycerols (1, 3 DG), 1, 2-diacylglycerols (1, 2 DG), monoacylglycerols (MG), wax esters (WE), triacylglycerols (TG), phospholipids (PP) including phosphatidylglycerols (PG), phosphatidylethanolamine (PE), phosphatidylcholines (PC), glycolipids (GL) including sulfoquinovosyldiacylglycerols (SQDG), monogalactosyl-diacylglycerols (MGDG), digalactosyldiacylglycerols (DGDG) and sterols (ST)) is investigated in both the dissolved and particulate fraction in seawater, differentiated between underlying water (ULW) and the sea surface microlayer (SML), and in ambient submicron aerosol particle samples (PM1) at the Cape Verde Atmospheric Observatory (CVAO) applying concerted measurements. The different lipids are found in all marine compartments but in different compositions. At this point, a certain variability is observed for the concentration of dissolved (∑DLULW: 39.8–128.5 μg L−1, ∑DLSML: 55.7–121.5 μg L−1) and particulate (∑PLULW: 36.4–93.5 μg L−1, ∑PLSML: 61.0–118.1 μg L−1) lipids in seawater of the tropical North Atlantic Ocean along the campaign. Only slight SML enrichments are observed for the lipids with an enrichment factor EFSML of 1.1–1.4 (DL) and 1.0–1.7 (PL). On PM1 aerosol particles, a total lipid concentration between 75.2–219.5 ng m−3 (averaged: 119.9 ng m−3) is measured with high atmospheric concentration of TG (averaged: 21.9 ng m−3) as a potential indicator for freshly emitted sea spray. Besides phytoplankton sources, bacteria influence the lipid concentrations in seawater and on the aerosol particles, so that the phytoplankton tracer (chlorophyll-a) cannot sufficiently explain the lipid abundance. The concentration and enrichment of lipids in the SML is not related to physicochemical properties describing the surface activity. For aerosol, however, the high enrichment of lipids (as a sum) corresponds well with the consideration of their high surface activity, thus the EFaer (enrichment factor on submicron aerosol particles compared to SML) ranges between 9 × 104–7 × 105. Regarding the single lipid groups on the aerosol particles, a weak relation between EFaer and lipophilicity (expressed by the KOW value) was identified, which was absent for the SML. However, overall simple physico- chemical descriptors are not sufficient to fully explain the transfer of lipids. As our findings show that additional processes such as formation and degradation influence the ocean- atmosphere transfer of both OM in general and of lipids in particular, they have to be considered in OM transfer models. Moreover, our data suggest that the extend of enrichment of lipid classes constituents on the aerosol particles might be related to the distribution of the lipid within the bubble-air-water- interface. Lipids, which are preferably arranged within the bubble interface, namely TG and ALC, are transferred to the aerosol particles to the highest extend. Finally, the connection between ice nucleation particles (INP) in seawater, which are active already at higher temperatures (−10 °C to −15 °C), and the lipid classes PE and FFA suggests that lipids formed in the ocean have the potential to contribute to (biogenic) INP activity when transferred to the atmosphere

    Two New Loci for Body-Weight Regulation Identified in a Joint Analysis of Genome-Wide Association Studies for Early-Onset Extreme Obesity in French and German Study Groups

    Get PDF
    Meta-analyses of population-based genome-wide association studies (GWAS) in adults have recently led to the detection of new genetic loci for obesity. Here we aimed to discover additional obesity loci in extremely obese children and adolescents. We also investigated if these results generalize by estimating the effects of these obesity loci in adults and in population-based samples including both children and adults. We jointly analysed two GWAS of 2,258 individuals and followed-up the best, according to lowest p-values, 44 single nucleotide polymorphisms (SNP) from 21 genomic regions in 3,141 individuals. After this DISCOVERY step, we explored if the findings derived from the extremely obese children and adolescents (10 SNPs from 5 genomic regions) generalized to (i) the population level and (ii) to adults by genotyping another 31,182 individuals (GENERALIZATION step). Apart from previously identified FTO, MC4R, and TMEM18, we detected two new loci for obesity: one in SDCCAG8 (serologically defined colon cancer antigen 8 gene; p = 1.85610 x 10(-8) in the DISCOVERY step) and one between TNKS (tankyrase, TRF1-interacting ankyrin-related ADP-ribose polymerase gene) and MSRA (methionine sulfoxide reductase A gene; p = 4.84 x 10(-7)), the latter finding being limited to children and adolescents as demonstrated in the GENERALIZATION step. The odds ratios for early-onset obesity were estimated at similar to 1.10 per risk allele for both loci. Interestingly, the TNKS/MSRA locus has recently been found to be associated with adult waist circumference. In summary, we have completed a meta-analysis of two GWAS which both focus on extremely obese children and adolescents and replicated our findings in a large followed-up data set. We observed that genetic variants in or near FTO, MC4R, TMEM18, SDCCAG8, and TNKS/MSRA were robustly associated with early-onset obesity. We conclude that the currently known major common variants related to obesity overlap to a substantial degree between children and adults

    The diabetes gene Zfp69 modulates hepatic insulin sensitivity in mice

    Get PDF
    AIMS/HYPOTHESIS: Zfp69 was previously identified by positional cloning as a candidate gene for obesity-associated diabetes. C57BL/6J and New Zealand obese (NZO) mice carry a loss-of-function mutation due to the integration of a retrotransposon. On the NZO background, the Zfp69 locus caused severe hyperglycaemia and loss of beta cells. To provide direct evidence for a causal role of Zfp69, we investigated the effects of its overexpression on both a lean [B6-Tg(Zfp69)] and an obese [NZO/B6-Tg(Zfp69)] background. METHODS: Zfp69 transgenic mice were generated by integrating the cDNA into the ROSA locus of the C57BL/6 genome and characterised. RESULTS: B6-Tg(Zfp69) mice were normoglycaemic, developed hyperinsulinaemia, and exhibited increased expression of G6pc and Pck1 and slightly reduced phospho-Akt levels in the liver. During OGTTs, glucose clearance was normal but insulin levels were significantly higher in the B6-Tg(Zfp69) than in control mice. The liver fat content and plasma triacylglycerol levels were significantly increased in B6-Tg(Zfp69) and NZO/B6-Tg(Zfp69) mice on a high-fat diet compared with controls. Liver transcriptome analysis of B6-Tg(Zfp69) mice revealed a downregulation of genes involved in glucose and lipid metabolism. Specifically, expression of Nampt, Lpin2, Map2k6, Gys2, Bnip3, Fitm2, Slc2a2, Ppargc1α and Insr was significantly decreased in the liver of B6-Tg(Zfp69) mice compared with wild-type animals. However, overexpression of Zfp69 did not induce overt diabetes with hyperglycaemia and beta cell loss. CONCLUSIONS/INTERPRETATION: Zfp69 mediates hyperlipidaemia, liver fat accumulation and mild insulin resistance. However, it does not induce type 2 diabetes, suggesting that the diabetogenic effect of the Zfp69 locus requires synergy with other as yet unidentified genes

    Multisite phosphorylation is required for sustained interaction with GRKs and arrestins during rapid -opioid receptor desensitization

    Get PDF
    Copyright © 2018 The Authors. G protein receptor kinases (GRKs) and -arrestins are key regulators of -opioid receptor (MOR) signaling and trafficking. We have previously shown that high-efficacy opioids such as DAMGO stimulate a GRK2/3-mediated multisite phosphorylation of conserved C-terminal tail serine and threonine residues, which facilitates internalization of the receptor. In contrast, morphine-induced phosphorylation of MOR is limited to Ser375 and is not sufficient to drive substantial receptor internalization. We report how specific multisite phosphorylation controlled the dynamics of GRK and -arrestin interactions with MOR and show how such phosphorylation mediated receptor desensitization. We showed that GRK2/3 was recruited more quickly than was -arrestin to a DAMGO-activated MOR. -Arrestin recruitment required GRK2 activity and MOR phosphorylation, but GRK recruitment also depended on the phosphorylation sites in the C-terminal tail, specifically four serine and threonine residues within the 370TREHPSTANT379 motif. Our results also suggested that other residues outside this motif participated in the initial and transient recruitment of GRK and -arrestins. We identified two components of high-efficacy agonist desensitization of MOR: a sustained component, which required GRK2-mediated phosphorylation and a potential soluble factor, and a rapid component, which was likely mediated by GRK2 but independent of receptor phosphorylation. Elucidating these complex receptor-effector interactions represents an important step toward a mechanistic understanding of MOR desensitization that leads to the development of tolerance and dependence

    Marine organic matter in the remote environment of the Cape Verde islands – an introduction and overview to the MarParCloud campaign

    Get PDF
    The project MarParCloud (Marine biological production, organic aerosol Particles and marine Clouds: a process chain) aims to improve our understanding of the genesis, modification and impact of marine organic matter (OM) from its biological production, to its export to marine aerosol particles and, finally, to its ability to act as ice-nucleating particles (INPs) and cloud condensation nuclei (CCN). A field campaign at the Cape Verde Atmospheric Observatory (CVAO) in the tropics in September–October 2017 formed the core of this project that was jointly performed with the project MARSU (MARine atmospheric Science Unravelled). A suite of chemical, physical, biological and meteorological techniques was applied, and comprehensive measurements of bulk water, the sea surface microlayer (SML), cloud water and ambient aerosol particles collected at a ground-based and a mountain station took place. Key variables comprised the chemical characterization of the atmospherically relevant OM components in the ocean and the atmosphere as well as measurements of INPs and CCN. Moreover, bacterial cell counts, mercury species and trace gases were analyzed. To interpret the results, the measurements were accompanied by various auxiliary parameters such as air mass back-trajectory analysis, vertical atmospheric profile analysis, cloud observations and pigment measurements in seawater. Additional modeling studies supported the experimental analysis. During the campaign, the CVAO exhibited marine air masses with low and partly moderate dust influences. The marine boundary layer was well mixed as indicated by an almost uniform particle number size distribution within the boundary layer. Lipid biomarkers were present in the aerosol particles in typical concentrations of marine background conditions. Accumulation- and coarse-mode particles served as CCN and were efficiently transferred to the cloud water. The ascent of ocean-derived compounds, such as sea salt and sugar-like compounds, to the cloud level, as derived from chemical analysis and atmospheric transfer modeling results, denotes an influence of marine emissions on cloud formation. Organic nitrogen compounds (free amino acids) were enriched by several orders of magnitude in submicron aerosol particles and in cloud water compared to seawater. However, INP measurements also indicated a significant contribution of other non-marine sources to the local INP concentration, as (biologically active) INPs were mainly present in supermicron aerosol particles that are not suggested to undergo strong enrichment during ocean–atmosphere transfer. In addition, the number of CCN at the supersaturation of 0.30 % was about 2.5 times higher during dust periods compared to marine periods. Lipids, sugar-like compounds, UV-absorbing (UV: ultraviolet) humic-like substances and low-molecular-weight neutral components were important organic compounds in the seawater, and highly surface-active lipids were enriched within the SML. The selective enrichment of specific organic compounds in the SML needs to be studied in further detail and implemented in an OM source function for emission modeling to better understand transfer patterns, the mechanisms of marine OM transformation in the atmosphere and the role of additional sources. In summary, when looking at particulate mass, we see oceanic compounds transferred to the atmospheric aerosol and to the cloud level, while from a perspective of particle number concentrations, sea spray aerosol (i.e., primary marine aerosol) contributions to both CCN and INPs are rather limited
    • …
    corecore