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Disturbed Neuronal ER-Golgi Sorting of Unassembled
Glycine Receptors Suggests Altered Subcellular Processing Is
a Cause of Human Hyperekplexia
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Recent studies on the pathogenic mechanisms of recessive hyperekplexia indicate disturbances in glycine receptor (GlyR) a1 biogenesis.
Here, we examine the properties of a range of novel glycine receptor mutants identified in human hyperekplexia patients using expression
in transfected cell lines and primary neurons. All of the novel mutants localized in the large extracellular domain of the GlyR «1 have
reduced cell surface expression with a high proportion of receptors being retained in the ER, although there is forward trafficking of
glycosylated subpopulations into the ER-Golgi intermediate compartment and cis-Golgi compartment. CD spectroscopy revealed that the
mutant receptors have proportions of secondary structural elements similar to wild-type receptors. Two mutants in loop B (G160R,
T162M) were functional, but none of those in loop D/[32-3 were. One nonfunctional truncated mutant (R316X) could be rescued by
coexpression with the lacking C-terminal domain. We conclude that a proportion of GlyR a1 mutants can be transported to the plasma
membrane but do not necessarily form functional ion channels. We suggest that loop D/(32-3 is an important determinant for GlyR
trafficking and functionality, whereas alterations to loop B alter agonist potencies, indicating that residues here are critical elements in
ligand binding.
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#149400). Most human mutations have been described in the
GLRA1 gene and follow a dominant or a recessive trait with in-
complete penetrance. GLRAI encodes the GlyR a1 subunit. Mu-
tations of the GLRB gene, which is translated in the GlyR 3
subunit, and the SCL5A6 gene, which results in the presynaptic
glycine transporter 2, may also lead to similar neuromotor phe-
notypes (Rees et al., 2006; Chung et al., 2013; James et al., 2013).

Introduction

Glycine receptors (GlyRs), which mediate fast inhibitory neu-
rotransmission in the adult spinal cord and brainstem, are the
major underlying cause of the human neurological motor disor-
der hyperekplexia (Online Mendelian Inheritance in Man
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Symptoms in human hyperekplexia range from exaggerated star-
tle reactions due to unexpected noise or tactile stimuli to muscle
stiffness, apnea, and loss of postural control upon startle. Ap-
proximately 55 GLRAI mutations have been detected in humans
(Bode and Lynch, 2014). Most dominant mutations have been
localized in the ion channel domain or adjacent loops, thereby
likely influencing channel properties. Defects in gating, desensi-
tization, and open channel probabilities of GlyRs have been de-
scribed (Schaefer et al., 2013). In contrast, recessive mutations are
distributed throughout the GlyR a1 sequence and have been as-
sociated with disturbed biogenesis. Cell surface receptor expres-
sion is decreased for recessive mutants compared with wild-type
(WT). A rescue of protein function by the coexpression with
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unaffected a- or B subunits has been described for some single
mutants (e.g., R392H and E375X; Chung et al., 2010; Bode et al.,
2013). Recessive mutants generate instable proteins that are de-
graded via proteasomal pathways (Villmann et al., 2009a). There
have, however, been no further studies on the subcellular traffick-
ing of mutant GlyR a1 protein.

GlyRs belong to the superfamily of Cys-loop receptors (CLRs)
and are postsynaptic pentameric receptor complexes of a1-and 3
subunits anchored via the scaffolding protein gephyrin (Grudz-
inska et al., 2005). The large extracellular domains (ECDs) of
GlyRs form ligand-binding sites at the interface between adjacent
subunits, which is constituted by loops A—C from one subunit
and loops D-F from the neighboring subunit (Brejc et al., 2001;
Brams et al., 2011; Hibbs and Gouaux, 2011).

Here, we describe the distinct attribution of novel patient mu-
tations in GlyR loop structures to subcellular receptor distribu-
tion in cell lines and primary neurons and their malfunctions. We
show the functional rescue of a truncated nonfunctional human
a1 variant R316X by complementation with the lacking protein
domain. We further elucidate subcellular trafficking routes in
primary neurons and transfected cell lines of recessive GlyR al
loop D/32-3 mutants. A high proportion of affected receptors get
stuck in the ER, but forward trafficking of subpopulations of
glycosylated receptors into the ER-Golgi intermediate compart-
ment (ERGIC) and cis-Golgi compartment was observed. There-
fore, a proportion of recessive a1 variants are transported to the
outer membrane but do not form functional ion channels. Loop
D/B2-3 was identified as an important determinant for GlyR
trafficking and functionality, whereas loop B mutants affect ei-
ther taurine or glycine affinity, indicating that residues here are
critical elements in ligand binding.

Materials and Methods

Direct sequencing from genomic DNA. Genomic DNA from male and
female index patients was prepared according to the manufacture’s pro-
tocol (DNeasy Blood and Tissue Kit; Qiagen). Specific intronic primers
for exons 1-9 of the GLRAI gene were used for PCR amplification of the
appropriate exons followed by direct sequencing (LGC Genomics).

Site-directed mutagenesis. cDNAs encoding the human WT or mutated
GlyR al (G160R, T162M, W68C, D70N, R72H, R316X, W407R,
iD-TM4-C) were subcloned into the eukaryotic expression vector pRK5
(CMYV promoter). Mutations were introduced using site-directed mu-
tagenesis. Primers (Life Technologies) containing the appropriate single
nucleotide exchanges also harbored a restriction site for quick identifica-
tion of generated clones. PCRs were set up as follows: 100 ng of template
DNA; 10 mm each dATP, dCTP, dGTP, and dTTP; 100 pmol of sense and
antisense primer, and 2 units of high-fidelity Taq polymerase (Roche) in
the supplied polymerase buffer. PCR conditions were as follows: 28 cycles
with 1 min at 95°C, 2 min at 55°C, and 3 min at 72°C. The last cycle ended
with a 10 min 72°C amplification step. The final fragments were ligated
into WT GlyR al. Double mutants (W68C/R316X and D70N/W407R)
were generated with restriction and religation into the respective other
mutant. All mutated clones were sequenced across the PCR-generated
sequence to verify successful mutagenesis using the ABI Sequencer sys-
tem. GlyR a1l WT and mutants were subcloned into a low-copy-vector
FUVAL_IRES2_GFP (kindly provided by R. Blum) under the control of
a ubiquitin promoter to exclude effects resulting from overexpression
systems.

Cell lines and primary neurons. Human embryonic kidney (HEK293)
cells were grown in minimum essential medium; COS7 (African Green
Monkey kidney cells) cells were grown in Dulbecco’s modified eagle
medium (high glucose; all cell culture media were purchased from Life
Technologies), supplemented with 10% fetal calf serum, r-glutamine
(200 mm), and 50 U/ml penicillin and streptomycin at 37°C and 5% CO,.
HEK293 cells were transiently transfected using a modified calcium-
phosphate precipitation method. All experiments concerning immuno-
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cytochemistry and protein biochemistry were performed 48 h after
transfection. HEK293 cells for FlexStation experiments were transfected
at 60—90% confluency using polyethyleneimine (PEL, 25 kDa, linear;
Polysciences). Briefly, 5 ug of DNA and 30 ul of 1 mg/ml PEI were added
to 1 ml of serum-free medium. The transfection solution was mixed
thoroughly and left for 10 min before adding dropwise to cells in 10 cm
dishes. Forty-eight hours after transfection, cells were transferred to
poly-lysine-coated, black, clear-bottomed, 96-well plates and left over-
night to allow adherence.

COS7 cells were transfected using a mixture of 1 ug of DNA, 30 ul of
PBS, and 62 ul of DEAE-Dextran (10 mg/ml) for a 3 cm dish. The
medium was aspirated after 30 minutes and fresh medium was added,
along with 12 ul of chloroquin (10 mm). The medium was exchanged
again after 3 h.

Hippocampal neurons were prepared from embryonic day 18 mouse
embryos and grown in neurobasal medium plus 5 ml of L-glutamin (200
mM) plus B27 supplement (Life Technologies) with an exchange of 50%
medium after 6 d in culture. Hippocampal neurons were transfected 3 d
after plating using a modified calcium-phosphate precipitation method.
Then, 2.5 ug of DNA (1 pg/pl), 2.5 ul of CaCl, (2.5 M), and 25 pl of 2X
BBS (50 mMm BES, 280 mm NaCl, 1.5 mm Na,HPO,, pH 7.05) were mixed
and incubated for 30 min. The neuronal medium was aspirated from the
hippocampal culture and stored until the end of transfection. Neurons
were transfected with the DNA solution plus 450 ul of neurobasal me-
dium for 30 min. The transfection mixture was aspirated and the cells
were washed twice with HBSS medium and floated with the original
neuronal medium.

Immunocytochemical staining. Transfected HEK293 cells were fixed in
4% paraformaldehyde in PBS for 10 min, washed twice with PBS, and
blocked with 5% goat serum in PBS (permeabilized with 0.2% Triton
X-100) for 30 min at 22°C. Primary GlyR antibody incubation was done
for 1 h at 22°C. The GlyR «1-specific antibody MAb2b was used without
permeabilization and recognizes an epitope in the far N-terminus (resi-
dues 1-10 of mature protein). In permeabilized cells, MAb4A a pan-a
antibody recognizing residues 96—105 (both from SYSY) or anti-rabbit
GIlyR a1 affinity-purified (Millipore) were used. The GlyR B subunit was
detected via an N-terminal attached myc-epitope by a c-myc antibody
(1:250; Santa Cruz Biotechnology). Antibodies for the compartmental
marker proteins were calnexin (polyclonal anti-calnexin antibody
ab22595; Abcam) or MA3—-027 (Thermo Fisher Scientific), ERGIC-53
(purified mouse antibody against ER-Golgi intermediate compartment;
Enzo Life Sciences), and GM130 (purified anti-mouse antibody; BD
Transduction Laboratories). Secondary antibodies gamCy3, garCy5,
and garALEXA488 (1:500; Dianova) were applied for 1 h. Slides were
mounted with Mowiol.

Biotinylation of cell surface protein. Biotinylation experiments were
performed as described previously (Unterer et al., 2012).

Membrane preparation and ligand-binding assay. For membrane pro-
tein analysis, crude cell membranes were prepared from transfected cells.
Western blots of membrane preparations from transfected HEK293 cells
were stained with the pan-« antibody, MAb4a (1:100). Radioligand
binding was performed using filtration assays with triplicate 80 ug of
membrane protein. Samples were incubated for 30 min in a range of
concentrations (1, 10, 20, 50, 100, and 200 nm) of [ *H]strychnine (spe-
cific activity 30 Ci/mmol; DuPont NEN); nonspecific binding was deter-
mined using 30 mm glycine (Kling et al., 1997). Binding data were
analyzed by a nonlinear algorithm provided by the program Origin 6.0
(Microcal Software).

EndoH and PNGase treatment. Deglycosylation experiments were per-
formed using the endoglycosidases EndoH and PNGaseF according to
the manufacture’s protocol (New England Biolabs).

Coimmunoprecipitation. Immunoprecipitation assays followed the
protocol by Unterer etal. (2012). In brief, 4 Petri dishes (10 cm diameter)
transfected with the cDNA coding for GlyR variants were harvested after
2 min of incubation on ice with 1400 ul of lysis buffer and tubes were
rotated for 40 min at 4°C. Lysates were centrifuged for 10 min at 14 000
rpm. The supernatant was incubated with the precipitating antibodies
for 4 h at 4°C by rotating the tubes. Then 50 ul of equilibrated protein
A/G agarose was added and incubated overnight at 4°C while rotating.



424 - J.Neurosci., January 7, 2015 - 35(1):422— 437

The antibodies used for immunoprecipitation were as follows: mouse
monoclonal anti-calnexin: 3 ul of MA3027, mouse monoclonal MAb2b
(1:500), and anti-GlyR a1. GlyRs were detected in Western blots with the
mouse monoclonal MAb4a (1:500) and calnexin by the polyclonal anti-
calnexin antibody ab22595 at a dilution of 1:500.

FlexStation experiments. Transfected cells on 96-well plates were
washed with Flex buffer (140 mm NaCl, 4.7 mm KCl, 2.5 mm CaCl,, 1.2
mm MgCl,, 11 mm HEPES, 10 mm D-glucose, pH 7.4). To each well, 100
wl of fluorescent membrane potential (blue) dye (FLIPR Membrane Po-
tential Blue Kit; Molecular Devices) diluted in Flex buffer was added.
Cells were incubated at 37°C for 30 min before assay. Fluorescence
was measured every 2 s for 200 s and agonists (50 ul) were added at
20 s. Data were normalized to the maximum change in fluorescence.
Concentration-response data were fitted to the four-parameter logistic
— Foin)/(1 4 10 108ECoMADm)) ‘where F,
is the maximum response, F, ;. is the baseline fluorescence, [A] is the log
concentration of agonist, denoted as [agonist] log M in the graph, and n4
is the Hill coefficient, using Prism version 5.0 software (GraphPad).

Electrophysiological recordings. Maximal current amplitudes (I,,,,)
were measured by patch-clamp recordings in the whole-cell configura-
tion from transfected HEK293 cells. Current signals were amplified with
an EPC-9 amplifier (HEKA). After transfection (24—48 h), whole-cell
recordings were performed by application of ligand using a U-tube sys-
tem bathing the suspended cell in a laminar flow of solution, giving a time
resolution for equilibration of 10-30 ms. Glycine was used at concentra-
tions between 0.5 and 3 mm. The lower-efficacy agonist taurine was used
at concentrations from 3 um to 10 mm. The external buffer consisted of
the following (in mwm): 137 NaCl, 5.4 KCl, 1.8 CaCl,, 1 MgCl,, 5 HEPES,
pH adjusted to 7.2 with NaOH; the internal buffer consisted of the
following (in mm): 120 CsCl, 20 N(Et),ClL, 1 CaCl,, 2 MgCl,, 11
EGTA, 10 HEPES, pH adjusted to 7.2 with CsOH. Recording pipettes
were fabricated from borosilicate capillaries with an open resistance
of 4—6 M(). Current responses were measured at a holding potential
of —60 mV. All experiments were performed at room temperature
(~22°C).

Expression and refolding of the ECDs. GlyR al ECD variants were
cloned into pET30a harboring an N-terminal S-tag and hexa-His-tag.
BL21 DE3 pLys-E. coli cells were transformed with these constructs for
expression experiments (Vogel et al., 2009). All ECD variants produced
in inclusion bodies were isolated, washed, solubilized in 8 M urea, and
refolded using stepwise dialysis. Proteins were dialyzed against 10 mm
Na,H, PO, pH 7.4.

CD spectroscopy. Recombinant proteins were dialyzed against 10 mm
Na,H,PO,, pH 7.4, and the sample concentration was determined by
measuring the A,g, using a molar extinction coefficient of 30 160 M "
cm ! (for W68C 24785 M ' cm ~ ). CD spectra were measured using a
JascoJ810 spectropolarimeter equipped with a Peltier elementina0.1 cm
quartz cuvette. Spectra were recorded at 20°C between 260 and 190 nm
with a 0.2 nm step size and an integration time of 1 s. A total of four
accumulations were averaged and the buffer spectrum, which was ob-
tained under identical conditions, was subtracted. The obtained spectra
were subsequently smoothed by a Savitzky—Golay filter with a window
size of 15 data points. The content of secondary structure of the proteins
was estimated using the concentration independent method developed
by Raussens et al. (2003, 2006).

Sucrose density centrifugation. Membranes from transfected HEK293
cells with GlyR «al variants were solubilized according to a previously
published protocol (Seeger et al., 2012). Total protein concentrations
were determined using the BCA method. Equal amounts of solubilized
proteins (750-1000 ug) were loaded on a 30 ml of continuous sucrose
gradient from 10% to 40% in 50 mwm Tris, pH 7.4, 1% Triton X-100 on
top of a 4 ml 60% sucrose layer. Centrifugation was done in a Kontron
ultra-centrifuge 26 000 rpm (121 569.8 X g) for 18 h at 4°C. Next, 100 ul
of methanol was added to 400 ul of manually taken fractions used for dot
blots. GlyR a1 protein was stained with the MAb4 antibody (SYSY). For
sucrose gradient calibration, marker proteins were cytochrome C, 12.3
kDa, 1.83 S; ovalbumin, 43 kDa, 3.55 S; adult human hemoglobin (-
tetramer), 64 kDa, 4.27 S; bovine serum albumin, 66.5 kDa, 4.6 S; malate

equation, F =F,_; + (F,

max
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dehydrogenase, 70 kDa, 4.32 S; gamma globulin, 150 kDa, 6.3 S; catalase
232 kDa, 11.3 S; and ferritin, 440 kDa, ~18 S.

Computational methods. The homology model of the GlyR al was
generated by using the crystal structure of the glutamate-gated chloride
channel (GIuCl) at 3.35 A resolution (pdb code: 3RIF) as a template
(Hibbs and Gouaux, 2011). The sequences of human GlyR a1 and GluCl
were aligned according to the ClustalW algorithm using the default
settings of the input form found at http://www.ch.embnet.org/software/
ClustalW.html (Thompson et al., 1994). The template structure was
modified by removing the Fab molecule bound at each GluCl subunit
interface, as well as by mutating the glutamate ligands into glycine. Mo-
lecular modeling was performed using MODELLER9.9 (Sanchez and
Sali, 2000) with the ligand module. The disulfide bridges were checked in
the resulting model. The modeled structure was improved by 200 steps of
conjugated gradient energy minimization using the Powell algorithm in
Sybyl7.3 (Sybyl 6.9, Release 7.0A; Tripos). The quality of the model was
verified by WHAT_CHECK (Hooft et al., 1996). The visualization of the
structures was performed with DS Viewer Pro6.0 (Accelrys).

Statistical analysis. Concentration-response curves were constructed
from the peak current amplitudes obtained with at least seven appropri-
ately spaced concentrations in the range 3—10 000 uM taurine. Using a
nonlinear algorithm (Microcal Origin), concentration-response data
were first analyzed using the following Hill equation I, .ine/le =
[taurine]ny/[taurine]ny + ECsyny, where I, refers to the current

taurine

amplitude at a given taurine concentration, I, is the current amplitude

at saturating concentrations of taurine, EC is the taurine concentration
producing half-maximal current responses, and 1 is the Hill coefficient.

Results

Description of patients

We identified four novel GLRAI mutations, one dominant and
three recessive, in four patients from three unrelated families
with classical clinical features of hyperekplexia (Fig. 1). Molecu-
lar genetic testing for GlyR mutations revealed heterozygosity for
the novel allele GLRAI (G160R, Patient 1), which was present in
both father and infant. Patient 2 was homozygous for the reces-
sive mutation T162M inherited from his consanguineous
heterozygous parents. The mutations D70N and W407R were
identified in a compound heterozygous patient (Patient 3) with
both parents carrying one of the described recessive mutations.

Clinical description of Patient 1 (GLRAI G160R)

This female child was referred from a district hospital by the local
pediatrician for assessment of generalized hypertonia. She was
born at 41 weeks gestation by spontaneous vaginal delivery. Ex-
amination on the first day of life revealed an increased tone in a
generalized distribution. Four days later, persisting hypertonia
was observed. Family history demonstrated a similar history of
hypertonia in infancy of the father. The patient had no dysmor-
phic features and an age-appropriate flexed posture of upper and
lower limbs. Deep tendon reflexes were present throughout but
were not brisk. When pulled from supine, there was sustained
hypertonia and stiffness of the trunk and limbs. When awake,
there was an exaggerated startle response to nose tap, which was
persistent and did not habituate. At follow-up, hypertonia per-
sisted and a delay in motor milestones was noted. At the age of 5
months, her tendency to excessive startle had improved.

Clinical description of Patient 2 (GLRA1 T162M)

This boy is the fifth child from healthy consanguineous parents of
Turkish origin. An older brother has generalized epilepsy with
onset at 6 years of age. The other siblings are healthy. The parents
reported that a maternal aunt who was born ~20 years ago had
symptoms similar to what was observed in the patient. After un-
eventful pregnancy, the boy was born at term without perinatal
complications. Directly after birth, continuous generalized stiff-
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Figure 1.

antisense: intron 5
CGTATATCNA AGTGG

5'=CGT ATA TCC AA* ***x_3'

3'=GCA TAT AGG TT* ***-5'"
A

antisense:
ATTCATCATATATCC

5'-ATT CAT CGT ATA TCC -3'
3'-TAA GTA GCA TAT AGG -5'
T

sense:
TGGAACNACCCCCGC

A
3'= TGG AAC GAC CCC CGC -5'
5'= ACC TTG CAG GGG GCG -3'
T

sense:
TTCTACNGGATCATC

3'- TTC TAC TGG ATC ATC -5'
5'- AAG ATG ACC TAG TAG -3'
C

Pedigrees of hyperekplexia families. A—C, Affected individuals are indicated by filled symbols (index patients are

marked with asterisks) and unaffected individuals are noted with open symbols. Half-closed symbols represent family members
with only one mutant allele. Direct sequencing of affected exons is shown on the right. Heterozygosity or homozygosity (T162M)
are marked with an arrow and listed in part of the GLRAT sequence in either sense or antisense direction.
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ness was noted, which decreased during
sleep. The newborn had an exaggerated
startle response to tactile and auditory
stimuli without habituation. Recurrent
episodes of unprovoked generalized my-
oclonus lasting for a few minutes with ap-
nea and cyanosis occurred during sleep.
Phenobarbitone and later clobazame
proved effective in ameliorating the noc-
turnal myoclonic attacks. Stiffness gradu-
ally decreased over the first year of life and
excessive startle response slowly disap-
peared over a few years.

Clinical description of Patient 3

(GLRAI D70N/W407R)

In the first days of life, the parents noted
myocloni including flexion of forearms,
clenched fists, and a tensed stomach. After
2 weeks, the young female patient showed
tonic spasms, especially during sleep, in
response to sudden and unexpected noise
or light stimuli. Seizures could be inter-
rupted by touching or holding for ~10 s.
The startle reaction observed during sleep
led sometimes to cyanotic skin color.
Hypertonic musculature, very vivid pro-
prioceptive reflexes, and a persisting
whole-body myoclonus to nose tapping,
hand clapping, or light stimulus were
observed. During sleep, the above-
described stimuli provoked complex
persisting seizures. At the age of 1 year
and 3 months, the girl showed no devel-
opmental delay.

Conserved residues of the GlyR a1
affect loop structures

Novel identified mutations were local-
ized in N-terminal loops B (G160R and
T162M) and B2-3 (D70N) and in trans-
membrane domain 4 (TM4; W407R) of
GlyR al (Fig. 2A-D). WT residues in loop
B and D/B2-3 and W407 in TM4 are
highly conserved among different GlyR
subunits (e.g., a2, a3, and SB; Fig. 2E). We
screened for other mutations in these re-
gions that have not yet been functionally
investigated. Human GlyR mutations
W68C and R72H are also localized close
to D70N in loop D/B2-3, with W68C
identified from a compound heterozy-
gous patient together with R316X (Tsai et
al., 2004; Coto et al., 2005). Similarly, WT
loop D/B2-3 residues (W68, R72) are also
conserved among all GlyR subunits and
in GluCl, a protein that shares the high-
est homology (33%) with the GlyR fam-
ily (Fig. 2D,E). The high degree of
conservation suggests the importance of
loop D/B2-3 for receptor function. Be-
cause W68C was identified in a com-
pound heterozygous patient together
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Figure2. Structural model of GlyR based on GluCl structure. 4, View parallel to lipid membrane. The glycine ligands, which are bound at each subunit, are represented in stick form. The amino
acids are shown in spacefill representation: W68 (red), D70 (light red), and R72 (pink) are located in loop D/32—3; G160 (dark green) and T162 (light green) are located in loop B. W407 (yellow) is
located in TM4. B, View of the human GlyR looking down the pore axis toward cytosol. €, Dimer interface with colored rectangles pointing to loop B (green) and loop D/32-3 (red). D, Enlarged view
to loop B and loop D/32-2; affected residues are marked. E, Alignment of various human GIyR sequences of subunits a1 (blue), o2, a3, and 3 compared with the AChBP from L. stagnalis, ELIC, a
prokaryotic homolog of the CLR family, and GluCl from C. elegans. Loop sequences are shown from loops A—G, part of the ICD = TM3— 4 loop covering residues 310 —324, and TM4. Residues affected
in patients with hyperekplexia are highlighted with different colors (red in loop D/32--3, greeniin loop B, gray TM3— 4loop, yellow TM4). All mutated residues are highly conserved among sequences

shown.

with R316X, the truncated el mutant was also investigated

(Fig. 2D, E).

Influence of loop structure on cellular localization
The expression of mutant a1 variants was analyzed by subcellular
immunostaining and compared with a biotinylation of surface

proteins. We used LIVE cell staining compared with fixed and
permeabilized transfected HEK293 cells 48 h after transfection.
Loop B mutations G160R and T162M were expressed at the cell
surface, T162M with less efficiency at the single-cell level (Fig. 3A,
bottom right). Coexpression with the 8 subunit, which is impor-
tant in the in vivo situation for receptor complex formation, did
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Figure 3.  Loop D/32-3 mutations interfere with trafficking of GIyR a1 polypeptides. A-C, Immunocytochemical staining of dominant and recessive GlyR a1 subunit mutants in transfected
HEK293 cells. Variants are grouped according to their localization within the polypeptide sequence into loop B (WT, G160R, T162M), loop D/ 323 (W68C, D70N, R72H), and TM3— 4 (R316X, W407R,
W68C/R316X, D70N/W407R) mutants. First and third column show the whole-cell expression of GlyR 1 variantsin fixed and permeabilized cells stained with the monoclonal antibody 4a (MAb4a).
Second and fourth columns represent live stainings of cell surface 1 protein with GIyR a1 with MAb2b. For T162M and D70N, coexpression with the GlyR 3 subunitis shown. GIyR B is detected via
its N-terminal myc-epitope. Note that GIyR (3 is not able to enhance cell surface expression of affected a1 mutants. Scale bar, 40 wm. D, Biotinylation experiments (Figure legend continues.)
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not enhance the expression of mutated «1T162M (Fig. 34, bot-
tom right). Using biotinylation to label surface receptors, the
surface expression of T162M was reduced to ~53% compared
with WT a1, whereas no differences were observed for the loop B
mutation G160R (Fig. 3D).

For loop D/B2-3 GlyR al variants, only a few labeled clusters
showed positive expression at the surface of transfected HEK293
cells, suggesting that the overall structure of a loop D/f32-3 sub-
population was not misfolded (Fig. 3B, second and fourth col-
umn). Forward trafficking of GlyR a1l mutants to the cellular
surface was again not enhanced upon coexpression with the 3
subunit detected via an N-terminal myc-epitope (Fig. 3B, bottom
right). Whole-cell expression of loop D/32-3 variants revealed a
significant reduction of GlyR a1 mutants compared with WT a1
protein (W68C 33%, D70N 51%, R72H 43%). Differences in
expression levels were more pronounced at the cell surface with
W68C 11%, D70N 15%, and R72H 8% of WT level (Fig. 3C,D).

The recessive mutant R316X, which islocalized in the large intra-
cellular TM3—4 loop, had relatively poor (10%) cell surface expres-
sion, although the level of whole-cell protein was comparable to WT
levels (Fig. 3D). Truncated proteins are usually recognized by the ER
control system and are not transported into the secretory pathway
(Lecker etal., 2006). A similar GlyR o1 mutation in the TM3—4loop
present in the mouse mutant oscillator led to very low expression
levels at the cell surface in vitro (Villmann et al., 2009b). A construct
harboring both mutations present in the compound heterozygous
patient W68C/R316X was almost absent from the plasma mem-
brane (Fig. 3C, bottom left). There was reduced cell surface expres-
sion with W407R (23%) and the double mutant D70N/W407R
behaved similarly (Fig. 3C, bottom right). The highly reduced num-
ber of receptors in the plasma membrane could explain the hyper-
ekplexia symptoms observed in the patients.

Loop B mutants modify receptor function
To explore ion channel function, whole-cell patch-clamp record-
ings were performed after transfection of al variants into
HEK293 cells. First, glycine was applied at two saturating concen-
trations (1 and 10 mm). Loop B variants did not show significant
differences in maximal currents (I,,,) compared with a1l WT
(Fig. 4A,D). All other constructs carrying mutations in loop
D/B2-3, the TM3-4 loop, or TM4 did not generate agonist-
induced currents even at a very high concentration of glycine (10
mm; Fig. 4 B, C). Expression of the double mutants W68C/R316X
and D70N/W407R revealed similar results (Fig. 4C). For some
cells expressing D70N alone (6 of 14 cells), very small currents
were recorded (Fig. 4B, Table 1). This is consistent with the dot-
ted expression pattern observed in LIVE cell images, which likely
represents a small subpopulation of functional channels at the
cell surface, at least for a«1D70N (Fig. 4B, inset).

A radioligand-binding assay using the antagonist [ *H]strych-
nine revealed that the binding affinity was not significantly

<«

(Figure legend continued.) to determine the amount of cell surface compared with whole-cell
protein of dominant and recessive GIyR c1 variants from transfected HEK293 cells. Quantifica-
tion was from at least six independent experiments; ratios compared with WT are shown above
the blots. Top graph refers to the amount of whole-cell protein; bottom graph represents the
biotinylated protein fraction reflecting surface GlyR «1. Note that R316X is stained at a lower
molecular weight of 30 kDa compared with full-length GlyRx1 (48 kDa). Mutations in loop
D/[32-3 result in a significant decrease of whole-cell and surface a1 receptors. *p << 0.05,
*¥p <0.01, ***p << 0.001. E, Representative Western blots of GlyR 1 mutants stained with
MAb4a. Cadherin was used as a membrane marker protein for internal loading control (stained
with a pan-cadherin antibody at 136 kDa).
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changed for G160R compared with WT (Fig. 4E, Table 2). A
reduced binding capacity (B,,,,) for GI60R is consistent with the
slight decrease of cell surface receptors (Fig. 3D). The mutant
protein T162M resulted in no specific binding (Fig. 4E). The
levels of expressed loop D/32—3 variants were either too low to be
detected and/or the mutations had severely decreased the
strychnine-binding affinity.

The FlexStation data revealed a glycine EC5, for G160R (43 =
3 wM) mutant receptors similar to WT (58 * 2.5 um), but both
B-alanine and taurine were more potent. A higher taurine affinity
for G160R was also observed in whole-cell recording from tran-
siently transfected HEK293 cells (Fig. 4H ). The affinity of GI60R
for B-alanine was similar to WT (less than a factor of 2; Fig. 4H,
Table 1). Compared with the WT, the mutant receptors G160R
showed a slight decrease in glycine affinity (Fig. 4H, Table 1).
Glycine activated T162M mutants (409 = 10 um), but was ~10-
fold less potent than at WT receptors. T162M mutants also had
comparatively higher EC,, with -alanine and did not respond to
taurine. W68C, D70N, and R72H did not respond to glycine (Fig.
4F,G, Table 1).

Nonfunctional human variants can be restored in ion

channel function

In addition to missense mutations, GlyR a1 mutations in human
and mice associated with a neuromotor phenotype may also re-
sult from nonsense mutations (Fig. 5A). Here, coexpression of
the truncated human mutant R316X together with a construct
encoding the lacking C-terminal portion (tail) of GlyR al re-
sulted in surface expression of R316X [R1 (Rescuel) = R316X +
iD-TM4-C; cf. Figs. 5B, 3C]. A similar expression pattern was
detected upon expression of the double mutant W68C/R316X
together with the C-terminal tail (R2 = W68C/R316X + iD-
TM4-C) or in coexpressed W68C and R316X with the tail con-
struct (R3 = W68C + R316X + iD-TM4-C; Fig. 5B, middle and
bottom). The quantification of surface protein revealed 10-17%
expression of R316X at the plasma membrane and 86% at the
whole-cell level compared with WT (Fig. 5D, E). Coexpressions
of R316X with the C-terminal tail were most successful for func-
tional rescue when the tail construct was expressed in excess. The
surface expression levels of R316X (15-24%) in coexpressions
with the C-terminal tail (iD-TM4-C) were similar compared with
single expression (Fig. 5D). When three GlyRal domain variants
were coexpressed, the surface expression of all three was en-
hanced (30-53%; Fig. 5E). Similarly, hippocampal neurons at in
vitro day 3 were transfected with R316X, W68C/R316X, W68C,
and R316X, together with the rescue construct iD-TM4-C (R1,
R2,R3). The coexpressed C-terminal domain iD-TM4-C resulted
in al polypeptides localized at the dendrites of primary hip-
pocampal neurons for R1 and R3 (Fig. 5C), referring to similar
trafficking routes of affected GlyR a1 mutants in neurons com-
pared with transfected eukaryotic cell lines. In contrast, in R2, the
construct iD-TM4-C was almost absent in dendrites of hip-
pocampal neurons (Fig. 5C, middle), which is consistent with the
lowest cell surface expression values quantified from membranes
of transfected cell lines (Fig. 5E). Overall truncation of a GlyR a1
does not obligatorily prevent forward trafficking in transfected
cells and primary neurons.

On a similar theme, R316X coexpressed with iD-TM4-C was
able to rescue strychnine binding, revealing a similar affinity to
WT, although B,,,, was reduced (30%), which is consistent with
decreased levels of expressed receptors at the plasma membrane
(Fig. 6A, Table 2). In contrast, the double mutant W68C/R316X
was unable to restore strychnine binding, which is consistent with
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lon channel functionality of GIyR 1 variants. A-C, Whole-cell recordings from transfected HEK293 cells with GlyR o1 variants of loops D and B and TM3— 4. Glycine-gated absolute

current amplitudes were recorded using saturating glycine concentrations of 1and 10 mm. Note that the small current amplitudes observed for D70N at 1 mm glycine reflects the small portion of
receptor complexes at the cell surface of transfected cells (inset: enhanced contrast, white arrows point to receptor clusters). D, Rrepresentative traces of functional GIyR c1 loop B variants G160R
and T162M from whole-cell recordings after application of 1 mm glycine for 1s. E, Radioligand binding with the antagonist [ *H] strychnine. K, and B,,,,, values were determined using the two-ligand
binding model with the software Microcal Origin 6.0 (for values, see Table 2). F—H, ECy, values for loop D/[32-3 variants (W68C, D70N, R72H) and loop B GlyRa1 (G160R, T162M) determined using
membrane-potential-sensitive dye. The normalized fluorescence values were plotted as a function of the agonist concentration (logarithmic scale). F, Loop D/32-3 variants showing nonspecific
increases in fluorescence indistinguishable from untransfected cells (dotted line). G, Concentration-response curves for loop B mutants (G160R black squares, T162M black triangles, WT filled circles)
with taurine (left), 3-alanine (right), or the full agonist glycine (middle). H, Graph plots from taurine, glycine, and 3-alanine concentration-response curves for WT and G160R determined from

whole-cell recordings.

the lack of binding in the W68C mutant (Fig. 6A). When W68C
was coexpressed with R316X and the C-terminal domain
iD-TM4-C (R3), function was restored (Fig. 6B), presumably
indicating that there were sufficient functional binding sites to
activate the receptor. The mutant W68C itself shows enhanced
transport to the cell surface when coexpressed with R316X and
iD-TM4-C. Therefore, W68C did not hinder R316X from for-

ward trafficking toward the cell surface to form functional GlyR
ion channels together with the C-terminal domain GlyR al
iD-TM4-C (Figs. 5E, 6B).

Folding status of the GlyR a1 variants
To investigate the impact of the amino acid exchanges in the ECD
on the CLR fold, we subcloned the a1 mutations into appropriate
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Table 1. Functional properties of GlyRc1 variants
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Localization GlyR variant L nax TMM gly (nA) n I ax 10mM gly (nA) n
Loop B WT 3.03 205 25 22+ 04 20
G160R 32207 10 53%£12 7
T162M 48 +0.6 10 14£02 n
Loop D/B2-3 W68C 0+0 9 0+0 10
D70N 0.02 = 0.004* 6/14* 0+0 10
R72H 0+0 10 0+0 10
TM3-41loop R316X 00 10 0+0 10
TM3—4loop, TM4, C-terminus iD-TM4-C 00 10 00 10
TM3-4loop R316X + iD-TM4-C (R1) 0.45 = 0.12 16 0.7 0.2 n
Loop D/TM3—4 loop W68C/R316X 00 10 00 10
Loop D/TM3—4 loop W68C/R316X + iD-TM4-C (R2) 0*0 21 0+0 10
Loop D/TM3—4loop W68C + R316X -+ iD-TM4-C (R3) 05013 13 0.12 = 0.02 n
™4 W407R 00 10 0+0 10
B2-3/TM4 D70N/W407R 0*0 10 0+0 16
FLEX station experiments
Localization GlyR variant ECso gly (pam)e ey n ECso tau (pm)e ey n ECs, B-ala (jum)p ey n
Loop B WT 58 £25 24 443 + 62 6 1201 6
G160R B+3 18 85+5 6 B2 6
T162M 409 =10 14 >162000 3 480 = 91 6
Loop D/B2-3 W68C NB ND ND
D70N NB ND ND
R72H NB ND ND
Whole-cell recordings
Localization GlyR variant ECg, gly (pam) n EC;, tau (um) n ECs, B-ala (m) n
Loop B WT 26*3 6 211 =22 6 63 =12 6
G160R M*8 6 55%6 6 120 £ 25 6
T162M ND ND ND
Loop D/B2-3 W68(C NF NF NF
D70N NF NF NF
R72H NF NF NF

ECs, values represent mean values = SEM. n, Number of measured cells out of different transfections; NB, nonbinding; ND, not determined; NF, nonfunctional.

*Calculated from responded cells only out of n cells recorded.

Table 2. Ligand binding properties of GlyRc1 variants

Localization GlyR variant B, (Pmol Xmg ") K, (nm) n
Loop B WT 15367 = 4025 MN5x66 9

G160R 7650 £ 939 1B6£12 3

T162M NB — 4
Loop D/B2-3 W68C NB — 3

D70N NB — 3

R72H NB — 3
TM3—4loop R316X NB e 4
TM3-41loop, TM4,  iD-TM4-C NB — 3

(-terminus

TM3—4loop R316X + iD-TM4-C 533 + 257 92*12 4
Loop D/TM3—41loop  W68C/R316X NB — 3
Loop D/TM3—4loop  W68C/R316X + iD-TM4-C  NB — 3
™4 W407R NB — 4
32-3/TM4 D70N/W407R NB — 3

n, Number of independent experiments; concentrations of *(H)strychnine 0.1~200 nm were used. B,,,, and K values
represent mean values == SEM. NB, Nonbinding.

vectors for expression in E. coli. The WT GlyR ECD has been
shown to produce an unfolded protein deposited in inclusion
bodies of E. coli cells that has to be refolded (Breitinger et al.,
2004). Refolded a1 proteins used in this study are shown in the
Coomassie-stained gel (Fig. 7A, bottom). We used circular dichr-
oism spectroscopy to assess the contents of secondary structures.
Similar fractions of a-helices and B-strands were observed for all
GlyR ECDs analyzed (Fig. 7A, top). Quantitative evaluation of
the secondary structure contents of the WT protein and all al

variants using the method of Raussens et al. (2003, 2006) ob-
served a-helical contents of 23-30% and 17-26% [-strand,
which show good agreement within the accuracy of the method
(Table 3). Therefore, it is concluded that all ECDs investigated
exhibit very similar structural properties.

In W68C, the content of B-strands is reduced to 17% and the
a-helical content slightly increased to 30% of that of WT accord-
ing to the higher maximum intensity and the leftward shift of the
intensity minimum to smaller wavelengths (Fig. 7A, insets).

To complement the results of the isolated refolded ECDs, we
investigated the folding and assembly states of full-length GlyR
variants expressed in HEK293 cells. A 10—40% sucrose gradient
was used on top of a 60% sucrose layer to determine the oli-
gomerization state and aggregation of the GlyR-ECD. The gradi-
ent was calibrated with selected globular proteins (arrows on top
of WT; Fig. 7B). For the averaged WT receptor, dot blot signals
gave five major peaks, the lowest corresponding to fraction 8 (low
range peak) at ~150 kDa and 6.3 S (Fig. 7B), most probably
representing dimers or trimers. Although all five major peaks are
present, the WT curve is rather flat due to the averaged values
taken from all individual experiments. T162M and G160R
showed a similar peak pattern as WT, with G160R having an
additional peak at fraction 15, which could represent an interme-
diate assembly species. The lowest peak (fraction 3) for T162M
matched the putative WT monomer peak, but was larger in am-
plitude. The high sucrose range peak of T162M gave a higher
signal, which could point to an increased propensity for aggrega-
tion (Fig. 7B). The B2-3 variant D70N has a first peak shifted to



Schaefer, Kluck et al. @ Subcellular Sorting Disturbances of GLRAT Mutants J. Neurosci., January 7, 2015 - 35(1):422— 437 « 431

A TM3-4 loop v
al human 292FVFSALLEYAAVNFVSRQOHKELLRFRRKRRHHK........E326
al mouse 293FVFSALLEYAAVNFVSRQHKELLRFRRKRRHHKSPMXNLFQE335

369 \4
ol human 3?’D.......PSKSPEEMRKLFIQRAKKIDKIS390
al mouse 33¢D.......PSKSPEEMRKLFIQRAKKIDKIS39!

370
B D

Q Q

- <

S 2 S 2
. O R . 0 K
s = 2 s = Q2

136 kDar>| o @ -~ e es® e |pan-cad

48 kDap-| (NI ' MAb4a

16 kDar>| — & (c-myc

SF we Y
R1 R2 R3 R1 R2 R3

136 kDa>| == ewms - = | a=e eumm == |pan-cad

48 kDap| -_— —

30 kD] e e > g = |0

-— G — .

16 kDar> SF e c-myc
,_1‘5'omcovr\mcooococ>v-
= M 0 © ®m © 1B © Wy O ©
3 " 0 6 0O 8 8O o 8 o © o
X

- =
F S 1.0
© 3
29
[<lyeN
£ X
=)
2 059 =
s
; m
0.0 O X O X O 00 X O
o —_
" 823 238231893
) ) )
=Er BrzRRZ 8¢
Q a] [a] Q
R1 R2 R3
1‘5'C,Nl\no<roomuor\mo
= 2 T T G\ A o T I = I DU LB
= BEcEclcRoRoNoRoNcoRoNS
X
0.8 1.0-
o v
© 9
cQ
[o%
33
.02)0‘5-
s
N BNl
O'OHI—Io—lxoxoéooxo
3%
S 823938231883
® ® )
FE R R RzRR S EF
Q o Q o

0
-
)
N
s
W

Figure 5.  Rescue of truncated human GlyR a1 by domain coexpression. 4, Alignment of the TM3—4 loop sequences from the human and mouse GIyR ac1. Residues determined from human
patients or in a mouse model for hyperekplexia (spd® = oscillator) leading to premature STOP codons are marked (bold letters and black arrows). B, The human GIyR o1 variants R316X,
W68C/R316X, and W68C + R316X were coexpressed with the GlyR domain iD-TM4-Cin HEK293 cells (refers to tail construct and represents the lacking protein sequence harboring residues of the
TM3—4 loop starting with F317, TM4, and the C terminus); rescue T = R1 (R316X + iD-TM4-C), R2 (W68C/R316X + iD-TM4-C), R3 (W68C + R316X + iD-TM4-C). Cell surface expression of
N-terminal GlyR a1 domains (W68C, R316X or W68(/R316X) was determined in LIVE stainings with the a:1-specific antibody MAb2b recognizing a native epitope in the far N-terminal part of GlyR
a1 (middle column). The C-terminal complementation tail domain was detected via its intracellularly located N-terminal myc-epitope (left column). Merged images show colocalization of both GlyR domains
(right column). €, Constructs used as shown in B. Hippocampal neurons, which do not express endogenous GIyR o1, were transfected at in vitro day 3 and stained using MAb2b for GlyR o1 detection and
anti-c-mycantibody for the tail constructs. Colocalization of coexpressed constructs along the dendrites is shown in merged images (enlarged insets show dendritic expressions). D, Representative Western blot
of constructs used for rescues R1, R2, and R3 after surface labeling with biotin. Controls (e.g., WT, iD-TM4-C, MOCK) are shown at the top. Note that staining of both o1 variants W68C (48 kDa) and R316X (30 kDa)
in R3 stained by MAb4a, iD-TM4-C was determined at 16 kDa. £, Quantification of whole-cell and surface GIyR o1 detected using the monoclonal antibody MAb4a from at least six independent experiments.
Ratios compared with WT expression levels are labeled above the bar diagrams. Within R1, R2, and R3, the expression of all o1 domains is shown separately. *p << 0.05, **p << 0.01, ***p << 0.001.
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Figure 6.  Physiological characteristics of functionally restored GlyRs from independent do-
mains. 4, Ligand-binding experiments were performed using membrane preparations of trans-
fected HEK293 with truncated GIyR 1 variants R316X and W68C/R316X together with the tail
construct (transfected ratio was 1: 5 of truncated ot 1: C-terminal domain). B, Whole-cell record-
ings from transfected HEK293 cells with rescues R1, R2, and R3 coexpressing a truncated GlyR
o1 variant together with the tail domain iD-TM4-C: R1 (R316X + iD-TM-C), R2 (W68C/R316X
+ iD-TM4-C), and R3 (W68C + R316X + iD-TM4-C). Glycine was applied at 1 mm. Represen-
tative traces are shown above the bars of the corresponding rescue condition. /,,,,, values result
from at least four independent experiments.

lower sucrose densities compared with the first WT peak. The
position between 43 kDa 3.55 S and 66.5 kDa 4.6 S fits to a
monomer. Loop D/f2-3 variants differ much more from WT,
pointing to pentamer assembly problems (Fig. 7B, middle).
R316X and W407R have a low-density-range double peak. The
rather broad peak between fractions 20 and 24 might result from
aggregated proteins or GlyR oligomers associated with other pro-
teins (Fig. 7B, bottom).

Disturbances in subcellular trafficking routes of GlyR

al mutants

The human GlyR a1 variants of loop D/32-3 have a higher ten-
dency to form aggregates. Only a small subpopulation of GlyR a1
loop D/B2-3 mutants were observed at the cell surface. There-
fore, we followed the loop D/B2-3 a1 proteins from the ER to the
cell surface by cell compartment analysis using low copy vectors
to exclude effects from overexpression. COS7 cells are suitable for
compartment analysis due to their large cytoplasm (Fig. 8).
Costaining of a1 with the ER chaperone calnexin revealed large
accumulations of loop D/B2-3 variants and W407R in the ER
(Fig. 8A, first column). In contrast, the a1l WT does not reside
within the ER— here, forward trafficking toward the cell surface
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is favored (Fig. 8A). Mutants W68C and D70N were detected in
ERGIC and cis-Golgi compartments in transfected COS7 cells
(Fig. 8A,B). The al variant R72H showed colocalization with
ERGIC, but was not detectable in cis-Golgi (Fig. 8A,B). Coim-
munoprecipitation studies of GlyR a1 supported this finding. A
low amount of a1l WT precipitated with calnexin, but increased
protein—protein interactions with calnexin were observed for all
loop D/B2-3 variants and W407R (Fig. 9A). Furthermore, these
mutant GlyR al proteins showed protein instability seen by the
large fraction of protein degradation compared with WT and
loop B variants G160R and T162M.

Forward trafficking from the ER requires protein glycosyla-
tion. The GlyR a1 is not a highly glycosylated protein, harboring
only one glycosylation site in the ECD. A digest with endoglyco-
sidases EndoH and PNGaseF showed differences in the glycosyl-
ation pattern, although all al variants were core glycosylated
(Fig. 9B). Although PNGaseF digests mannose chains directly
attached at asparagine, EndoH is only able to digest high-
mannose-type glycans, leaving only one N-acetylglucosamine at-
tached at the asparagine until the Golgi a-glucosidase II cleaves
off two mannose molecules. Variants positive for forward cis-
Golgi trafficking (W68C, D70N) possessed a higher sugar tree
capable of being cut by PNGase F (Fig. 9B). GlyRs a1 R72H and
W407R do only receive core glycosylation, enabling trafficking
toward ERGIC but preventing transport to the Golgi secretory
pathways. Similar protein transportation pathways were ob-
served in transfected primary hippocampal neurons lacking en-
dogenous GlyR a1 (Fig. 9C). These data argue that loop D/32-3
mutations lead to trafficking ER-Golgi defects in neurons and
transfected cell lines.

Discussion

The major causes of human hyperekplexia are defective GlyRs. So
far, the focus on mutants has been to identify physiological
changes in receptor function (Chung et al., 2010; Bode and
Lynch, 2013; Bode et al., 2013), although recent studies have
shown that recessive hyperekplexia may result from disturbed
GlyR biogenesis (Vergouwe et al., 1999; Villmann et al., 2009a;
Bode et al., 2013). Because GlyR trafficking has not yet been
investigated at the subcellular level, we examined the underlying
pathogenic mechanisms in terms of protein maturation and sub-
cellular receptor trafficking. Due to the continuous expansion of
genetic data, the number of identified compound heterozygous
patients is currently increasing. If both alleles are affected by
recessive mutations, it becomes important to resolve the impact
of each single mutation on the assembly and trafficking of the
pentameric GlyRs. We identified four novel mutations localized
in extracellular loops B and D/32-3 and one in TM4; all of these
are residues conserved within the GlyR family. We have also con-
sidered other mutations (Tsai et al., 2004; Coto et al., 2005) iden-
tified in these domains to provide a general mechanism for
mutant GlyR variants. GlyR a1 loop B variants had mutations of
hydrophobic glycine to positively charged arginine or the polar
threonine to nonpolar methionine, but expression levels demon-
strated no differences for G160R and only a slight decrease for
T162M. In contrast, mutants in TM4 and loop D/B2-3 were
almost absent from the cell surface, suggesting that these posi-
tions are key determinants in protein biogenesis. Coexpression
with GlyR B, which is present in vivo in the adult mammalian
receptor complex that has been shown to promote surface accu-
mulation for some recessive GlyR mutants (Chung et al., 2010),
did not enhance mutant loop D/f32-3 populations at the plasma
membrane. Loop D/B2-3 mutants are localized at the transition
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Figure7.

Structural analysis of GlyRa1 variants. A, Circular dichroism spectroscopy of refolded GIyR ECDs of WT, loop B variants (G160R and T162M), and loop D/[32-3 variants. Colors are given

in the figure legend next to the graph. Inset, Enlarged intensity maximum shown for W68C (orange) and D70N (light blue) compared with WT (black). Bottom, Coomassie-stained gel of the refolded
WTand 1 ECD variants used for recording (D spectra. B, Sucrose density gradient centrifugation of the full-length GlyR WT and hyperekplexia variants. Peak distribution points to various receptor
oligomerization states with monomers (left), over various assembly states to aggregates (far right) for loop B, D and TM3— 4 loop variants. Arrows above the top graph point to the maximal peaks
of the proteins used for calibration. Normalized AU, Arbitrary units determined from GIyR detection in various fractions using MAb4a. The line colors and symbols for each variant are given in the
legends next to the graphs. The positions of the putative monomer and dimer obtained for Torpedo (Riganti et al., 2005) are marked by red arrowheads. Aggregrate formation is designated by gray boxes.

Table 3. Estimation of secondary structure content from (D spectra of refolded
GlyR ECDs

Variant  «a-Helix(%)  [B-Strand (%)  Tumns(%)  Unordered (%)  Sum (%)
WT 225 239 12.9 35.1 94.0
W68C 304 174 12.5 338 94.1
D70N 238 229 12.5 345 93.7
R72H 235 23.1 12.5 34.4 93.6
G160R 231 255 12,5 347 95.8
Tem 225 250 125 35.0 95.0

SD (%) 11.9 1.1 415 10.3

Analysis was performed using the method of Raussens et al. (2003, 2006).

of the second B-sheet to a 3, helix in the GlyR a1 ECD. Altera-
tions to residues F63 and R65, which are close to loop D/32-3,
have been shown to decrease in surface expression and strychnine
potency (Bramsetal.,2011; Bode etal., 2013). Here, we show that
all loop D/B2-3 mutants W68C, D70N, and R72H were unable
to bind ligand and result in nonfunctionality. The small sub-
population of receptors able to circumvent the quality control
system and to traffic to the cell surface internalize very fast.
Receptors containing the TM4 mutant W407R remain in-
tracellular, possibly due to a pentamerization defect. Aromatic
residues present in TMs 1, 3, and 4 have been previously pro-
posed to form an aromatic network required for pentameriza-

tion, with W407 being a key residue in this process (Haeger et
al., 2010).

Interestingly, a truncation of the GlyR a1 protein at position
316 resulted in a subpopulation transported toward the cell sur-
face. Nonsense mutations are usually coupled to nonsense-
mediated decay mechanisms (Conti and Izaurralde, 2005).
However, this general assumption seems not to apply for GlyR
truncations. In a recent study, the incorporation of al E374X
together with unaffected o subunits into functional receptor
complexes were shown (Bode et al., 2013). A functional rescue of
a truncated murine a1 variant was also demonstrated upon co-
expression with the lacking C-terminal domain (Villmann et al.,
2009b). The human a1 mutant R316X itself is functionally inac-
tive, but here we show its functional rescue by domain coexpres-
sion. These data provide the first evidence that functional rescue
by domain complementation is transferable to the human situa-
tion and may be a general mechanism for ion channel restoration
of truncated receptors. The mutant binds ligand with no changes
of glycine K, values compared with a1 WT. The observed lower
B, Within domain coexpression can be explained by the ratio of
1:5 of truncated a1 to the C-terminal domain. Due to early trun-
cation, R316X lacks the basic motif ***RRKRR, which has been
described as an important domain for surface transport (Sadtler
etal., 2003) and can explain the decreased cell surface trafficking.
Here, the presence of this motif in the C-terminal complementa-
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Subcellular trafficking routes of a1 loop D/32—3 mutants. A—C, GlyR a1 variants W68C, D70N, and R72H were analyzed for their localization in cellular compartments ER, ERGIC, and

cis-Golgi. To exclude effects from overexpression, a1 variants were subcloned into a low-expression vector under the control of the ubiquitin promoter. 4, Merged images showing costaining of GlyR
o1 (red) with the ER protein calnexin (cyan, rabbit anti-calnexin, 1:500). Right, Magpnification of the white rectangle with white arrowheads pointing to accumulated GlyRe1. B, Colocalization of
a1 (cyan) with the ERGIC protein 53 (red, mouse anti-ERGIC53, 1:500); the ERGIC compartment is marked with a white dotted line and shown in higher magnification at top right. €, Costaining with
the cis-Golgi marker GM130 (red, mouse anti-GM130, 1:500). Color codes are indicated in labels within the left images. The nuclei are stained with DAPI (blue). White arrows point to colocalization
of GlyR a1 variants with compartmental marker proteins. Scale bars: 25 m in left images, 5 wm for ERGIC, and 3 m for cis-Golgi in enlarged compartment images.

tion domain is not sufficient to enable efficient cotransport of
R316X. Coexpression of R316X and loop D variant W68C, to-
gether with the independent C-terminal domain, resulted into
the formation of functional ion channels, whereas the presence of
both mutations in one a1 subunit W68C/R316X led to nonfunc-
tion. Therefore, loop D/B32-3 residues are key players in receptor
maturation. Amino acid exchanges in loop D/B2-3 can lead to
misfolded protein, hindering forward trafficking of the main

neuronal a1 receptor population, recognition by cellular control,
and ER retention.

Loop B mutations are localized close to residue F159, which
interacts via a cation-7r interaction with the agonist glycine and
the low-efficacy agonists B-alanine and taurine (Pless et al., 2008;
Hibbs et al., 2009; Pless et al., 2011). Therefore, the neighboring
residues might influence agonist binding. Glycine affinity was
slightly decreased for G160R, but a gain of function for the low-
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H

GlyRa1 variants circumvent the ER quality control system. A, Immunoprecipiation of GlyR a1 loop D/32-3 variants with anti-calnexin antibody stained for GlyRax1 with MAb4a

(1:500). Input and IP are shown. Black arrows point to the appropriate molecular weight of GlyR a1 of 48 kDa. B, Analysis of the glycosylation pattern of loop D/32-3 variants compared with WT.
Endoglycosidases EndoH and PNGaseF were used for deglycosylation of a1 proteins and stained with MAb4a. Arrow points to the appropriate molecular weight of 48 kDa for glycosylated GIyR 1,
45 kDa of deglycosylated protein. Note the differences in the glycosylation pattern of R72H and W407R compared with WT and the other loop D/[32—3 mutants. €, Loop D/ 323 variants transfected
into hippocampal neurons. Images show GM130 costainings. White boxes mark the enlarged areas at higher magpnification (bottom).

efficacy agonist taurine was observed. A different effect was seen
with T162M, where there was a decrease in glycine affinity by
eightfold and no binding to taurine. Differences in side chains of
loop B residues lead to changes in the overall conformation of the
ligand-binding pocket, possibly by altering the positioning of
F159. Alternatively, they could be affecting the ability of the re-
ceptor to undergo the gating transitions that translate ligand
binding into pore opening.

The very low abundance of loop D/32-3 GIyR variants at the
cell surface and the inability to bind ligand suggest that these
variants are actively retained by the cellular quality control sys-
tem. One cause for this could be the abnormal folding of these
loop D/B2-3 mutants, but our data from ECDs expressed in E.
coli gave similar CD spectra of loop D/B32-3 variants and WT al,
with almost no obvious differences in the calculated content of
secondary structures such as a-helices, 3-strands, and turns. For
W68C, increased contents of a-helices and decreased B-strand
were observed using the method of Raussens et al. (2003, 2006).
This could point to a basic folding problem due to a missing
aromatic stacking core of the molecule. Therefore, the refolded
ECDs adopt the common Ig-fold typical for all CLR ECDs.

In sucrose density gradient centrifugations, proteins are dis-
tributed according to their buoyancy, providing information
about their quaternary and tertiary structure as local interactions

within one protomer influence the compactness of the folded
protein (Gotti et al., 1992; Mazzo et al., 2013). An improved
solubilization protocol and a linear gradient of 10—40% achieved
splitting of the GIyR signal into five different peaks, reflecting
different assembly stages and aggregated protein. Loop D/B32-3
variants have a broader high peak range than the WT, which
could be due to aggregation and/or increased interaction with
chaperones of the protein quality machinery. Peaks for putative
WT al dimers and pentamers were in a similar range (9 and 13.6
S) to previously published data for Torpedo californica nAChR
(Riganti et al., 2005), but loop D/f2-3 variants lacked the peak
that represents pentameric receptors, assembly of which may be
the rate-limiting step for nAChR (Ross et al., 1991; Wanamaker
and Green, 2007). The slowness of fine-tuned folding after the
initial Ig-fold and the slow assembly explains why all assembly
intermediates may have been detectable. Therefore, our data sug-
gest that loop D/32-3 and ICD variants are unable to achieve an
ordered pentamerization.

Aggregation of nascent polypeptides does result from folding
defects in the ER and are recognized by chaperones such as cal-
nexin, which controls N-glycosylation of protein before forward
trafficking into the secretory pathway. Large proportions of loop
D/2-3 variants interacted with calnexin leading to protein ac-
cumulations within the ER in primary neurons and cell lines.
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Glycosylation of the 45 kDa GlyR a1 protein plus 3 kDa N-glycan
per protomer has been described as a prerequisite for ER exit and
pentamerization (Griffon et al., 1999). Core glycosylation was
observed for all GlyR a1 mutants. A distinct glycosylation pattern
indicated differences among loop D/f32-3 variants, W407R, and
WT in subcellular transport. Due to the presence of a subpopu-
lation of EndoH-resistant al protein of mutants W68C and
D70N, these GlyRs exited the ER and entered the Golgi appara-
tus. In contrast, R72H and W407R did not gain EndoH resistant
carbohydrates and were retained in the ER. Some protein clusters
of R72H were detected in ERGIC, but never in the cis-Golgi com-
partment. Therefore, loop D/32-3 mutations affect trafficking at
different compartmental levels. Although some subpopulations
ofloop D/B2-3 variants are able to leave the ER, they are presum-
ably recognized by other control proteins localized within the
ERGIC or Golgi that disable further transport toward the cell
surface.

The GlyR al mutants described here are aberrant in respect to
trafficking and assembly. The observed differences of a1 variants
in forward and, presumably, reverse transport from ERGIC and
cis-Golgi to the ER for further degradation seems to be highly
dynamic and precisely controlled by as yet unknown proteins of
the secretory pathway. Our data with compartmental subcellular
localization and EndoH resistance as a measure for subcellular
localization and trafficking of the GlyR «1 variants provide fur-
ther insights into the pathogenic mechanism of the neuromotor
disorder hyperekplexia.
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