24 research outputs found

    Mechanism of uranium reduction and immobilization in Desulfovibrio vulgaris biofilms

    Get PDF
    The prevalent formation of noncrystalline U(IV) species in the subsurface and their enhanced susceptibility to reoxidation and remobilization, as compared to crystalline uraninite, raise concerns about the long-term sustainability of the bioremediation of U-contaminated sites. The main goal of this study was to resolve the remaining uncertainty concerning the formation mechanism of noncrystalline U(IV) in the environment. Controlled laboratory biofilm systems (biotic, abiotic, and mixed biotic abiotic) were probed using a combination of U isotope fractionation and X-ray absorption spectroscopy (XAS). Regardless of the mechanism of U reduction, the presence of a biofilm resulted in the formation of noncrystalline U(IV). Our results also show that biotic U reduction is the most effective way to immobilize and reduce U. However, the mixed biotic abiotic system resembled more closely an abiotic system: (i) the U(IV) solid phase lacked a typically biotic isotope signature and (ii) elemental sulfur was detected, which indicates the oxidation of sulfide coupled to U(VI) reduction. The predominance of abiotic U reduction in our systems is due to the lack of available aqueous U(VI) species for direct enzymatic reduction. In contrast, in cases where bicarbonate is present at a higher concentration, aqueous U(VI) species dominate, allowing biotic U reduction to outcompete the abiotic processes

    Uranium Isotopes Fingerprint Biotic Reduction

    Get PDF
    Knowledge of paleo-redox conditions in the Earth's history provides a window into events that shaped the evolution of life on our planet. The role of microbial activity in paleo-redox processes remains unexplored due to the inability to discriminate biotic from abiotic redox transformations in the rock record. The ability to deconvolute these two processes would provide a means to identify environmental niches in which microbial activity was prevalent at a specific time in paleo-history and to correlate specific biogeochemical events with the corresponding microbial metabolism. Here, we demonstrate that the isotopic signature associated with microbial reduction of hexavalent uranium (U), i.e., the accumulation of the heavy isotope in the U(IV) phase, is readily distinguishable from that generated by abiotic uranium reduction in laboratory experiments. Thus, isotope signatures preserved in the geologic record through the reductive precipitation of uranium may provide the sought-after tool to probe for biotic processes. Because uranium is a common element in the Earth's crust and a wide variety of metabolic groups of microorganisms catalyze the biological reduction of U(VI), this tool is applicable to a multiplicity of geological epochs and terrestrial environments. The findings of this study indicate that biological activity contributed to the formation of many authigenic U deposits, including sandstone U deposits of various ages, as well as modern, Cretaceous, and Archean black shales. Additionally, engineered bioremediation activities also exhibit a biotic signature, suggesting that, although multiple pathways may be involved in the reduction, direct enzymatic reduction contributes substantially to the immobilization of uranium

    Uranium Isotopes Fingerprint Biotic Reduction

    Get PDF
    Knowledge of paleo-redox conditions in the Earth's history provides a window into events that shaped the evolution of life on our planet. The role of microbial activity in paleo-redox processes remains unexplored due to the inability to discriminate biotic from abiotic redox transformations in the rock record. The ability to deconvolute these two processes would provide a means to identify environmental niches in which microbial activity was prevalent at a specific time in paleo-history and to correlate specific biogeochemical events with the corresponding microbial metabolism. Here, we demonstrate that the isotopic signature associated with microbial reduction of hexavalent uranium (U), i.e., the accumulation of the heavy isotope in the U(IV) phase, is readily distinguishable from that generated by abiotic uranium reduction in laboratory experiments. Thus, isotope signatures preserved in the geologic record through the reductive precipitation of uranium may provide the sought-after tool to probe for biotic processes. Because uranium is a common element in the Earth's crust and a wide variety of metabolic groups of microorganisms catalyze the biological reduction of U(VI), this tool is applicable to a multiplicity of geological epochs and terrestrial environments. The findings of this study indicate that biological activity contributed to the formation of many authigenic U deposits, including sandstone U deposits of various ages, as well as modern, Cretaceous, and Archean black shales. Additionally, engineered bioremediation activities also exhibit a biotic signature, suggesting that, although multiple pathways may be involved in the reduction, direct enzymatic reduction contributes substantially to the immobilization of uranium

    Report and preliminary results of SONNE cruise SO175, Miami - Bremerhaven, 12.11 - 30.12.2003 : (GAP, Gibraltar Arc Processes)

    Get PDF
    Expedition SO175 using FS Sonne aimed for a multidisciplinerary geoscientific approach with an international group of researchers. Methods covered the entire span from geophysical data acquisition (seafloor mapping, echography, seismic reflection), sediment coring at sites of active fluid venting, in situ heat flow measurements across the entire length of the Gibraltar thrust wedge, the deformation front, landslide bodies, and mud volcanoes, and finally the deployment of a long-term pore pressure probe. Video-supported operations helped to identify fluid vent sites, regions with tectonic activity, and other attractive high priority targets. Qualitative and quantitative examinations took place on board and are continued on land with respect to pore pressure variation, geomicrobiology, sediment- and fluid mobilization, geochemical processes, faunal assemblages (e.g. cold water corals), and gas hydrates (flammable methane-ice-crystals). Main focus of the expedition has been a better understanding of interaction between dynamic processes in a seismically active region region with slow plate convergence. In the context of earthquake nucleation and subduction zone processes, the SO175 research programme had a variety of goals, such as: ‱ To test the frictional behaviour of the abyssal plain sediments. ‱ To explore the temperature field of the 1755 thrust earthquake event via heat flow measurements. ‱ To assess the role of fluid venting and gas hydrate processes control slope stability and mud volcanic activity along the Iberian continental margin. ‱ To measure isotope geochemistry of pore waters and carbonates of deep fluids. ‱ To quantify microbial activity in Gibraltar wedge sediments. ‱ To test whether microseismicity in the area corresponds to in situ pore pressure changes. ‱ To find out if enhanced heat flow max be indicative of active subduction. Initial tentative results during the cruise suggest that there is a component of active thrusting at the base of the wedge, as attested by heat flow data. Based on mostly geochemical evidence, mud volcanism was found less active than previously assumed. Highlights from post-cruise research include the successful deployment of the long-term station and high frictional resistance of all incoming sediment on the three abyssal plains

    Sulfidity controls molybdenum isotope fractionation into euxinic sediments: Evidence from the modern Black Sea

    No full text
    Molybdenum (Mo) isotope fractionation has recently been introduced as a new proxy in oceanography and biogeochemistry. It is therefore fundamental to understand the processes controlling Mo partitioning into modern marine environments. This study identifies the availability of dissolved sulfide as the dominant control on overall Mo removal from the water column in euxinic systems. Mo isotopic composition of surface sediments from different localities of the Black Sea demonstrates complete fixation of Mo only below 400 m water depth, above a critical concentration of 11 ÎŒmol l−1 aqueous hydrogen sulfide in the bottom water. The Mo isotopic composition of these sediments reflects the homogeneous seawater isotopic composition of 2.3‰. In contrast, significant Mo isotope fractionation into less euxinic sediments is evident at shallower depths in the Black Sea, as well as in temporarily euxinic deeps of the Baltic Sea, consistent with the observed lower maximum sulfide concentrations in the respective water columns. Therefore, Mo isotope signatures in the modern Black Sea constrain the processes responsible for global Mo removal from the ocean by euxinic sediments. Furthermore, models of past ocean anoxia reconstruction have to consider that the seawater Mo isotopic composition is not per se archived in euxinic sediments

    Barium isotope fractionation during experimental formation of the double carbonate BaMn[CO₃]₂ at ambient temperature

    Get PDF
    In this study, we present the first experimental results for stable barium (Ba) isotope (Âč³⁷Ba/Âč³⁎Ba) fractionation during low-temperature formation of the anhydrous double carbonate BaMn[CO₃]₂. This investigation is part of an ongoing work on Ba fractionation in the natural barium cycle. Precipitation at a temperature of 21±1°C leads to an enrichment of the lighter Ba isotope described by an enrichment factor of−0.11±0.06‰ in the double carbonate than in an aqueous barium-manganese(II) chloride/sodium bicarbonate solution, which is within the range of previous reports for synthetic pure BaCO ₃ (witherite) formation

    Architecture and sediment dynamics of the Mauritania Slide Complex

    No full text
    Large-scale mass wasting is an important sedimentary process along the northwest African margin, and is related to high sediment accumulation rates under an ocean margin upwelling regime. Although the margin is generally arid with limited fluvial input, additional sediment supply comes from wind-borne Saharan dust. Recent mapping of the margin off Mauritania has revealed a major sediment slide, here called the Mauritania Slide Complex, as it comprises elements of true sliding as well as more mobile distal debris flow. Seismic data image stacked slide deposits separated by undisturbed stratified sediments indicating that undisturbed sediment accumulation was interrupted by several phases of slope failure. A series of stepped headwalls, 25–100 m high, represents the source area of the youngest slide event, which most likely occurred as retrogressive type of failure. The area of seafloor affected by this mass movement is 30,000 km2, while the deposit volume is 600 km3. The uppermost debrite unit, which has been 14C dated at 10.5–10.9 ka, forms a broad tongue extending down to the lower slope. This debrite comprises a vertical succession of three different layers of matrix types, with a predominantly outer shelf source at the base and pelagite-dominated composition at the top. The complete sequence of three layers was deposited at a mid slope position, whereas only the upper layers reached the lower slope. A thick pile of sediments with outer shelf/upper slope derived biogenic and terrigenous debris-rich sediments at the base and hemipelagic sediments on top failed at an upper to mid slope location and disintegrated into a layered debris flow on its down-slope journey.<br/
    corecore