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ABSTRACT: The prevalent formation of noncrystalline U(IV) species in
the subsurface and their enhanced susceptibility to reoxidation and
remobilization, as compared to crystalline uraninite, raise concerns about
the long-term sustainability of the bioremediation of U-contaminated sites.
The main goal of this study was to resolve the remaining uncertainty
concerning the formation mechanism of noncrystalline U(IV) in the
environment. Controlled laboratory biofilm systems (biotic, abiotic, and
mixed biotic−abiotic) were probed using a combination of U isotope
fractionation and X-ray absorption spectroscopy (XAS). Regardless of the
mechanism of U reduction, the presence of a biofilm resulted in the
formation of noncrystalline U(IV). Our results also show that biotic U
reduction is the most effective way to immobilize and reduce U. However,
the mixed biotic−abiotic system resembled more closely an abiotic system:
(i) the U(IV) solid phase lacked a typically biotic isotope signature and (ii)
elemental sulfur was detected, which indicates the oxidation of sulfide coupled to U(VI) reduction. The predominance of abiotic
U reduction in our systems is due to the lack of available aqueous U(VI) species for direct enzymatic reduction. In contrast, in
cases where bicarbonate is present at a higher concentration, aqueous U(VI) species dominate, allowing biotic U reduction to
outcompete the abiotic processes.

1. INTRODUCTION

Uranium mining, milling, and chemical treatment left a legacy
of uranium contamination around the world. In order to
mitigate the negative effect of this contaminant on the
environment, human health, and the economy, a combined
effort from the research community, engineers, and practi-
tioners is necessary. Bioremediation is a promising strategy that
leads to the immobilization of uranium in situ by microbial
reduction of labile U(VI) to less mobile U(IV),1−8 by
biosorption9,10 or by bioaccumulation.11,12 These methods
have the potential to prevent the spread of the contaminant
plume and, thus, may improve groundwater quality down-
stream from the applied engineered solution. An efficient
cleanup strategy for U-contaminated sites must be based on a
sound understanding of biogeochemical conditions present at
the site and on uranium properties. Consequently, knowledge
acquired through experimental work should be translated into
field recommendations to ensure a successful remediation
outcome.
In uranium bioremediation research, most laboratory studies

are conducted in the presence of planktonic microorgan-
isms.13−15 However, this approach fails to acknowledge the
importance of biofilms, which is the most common growth
form of microorganisms in the environment.16−18 The main
structural components of bacterial biofilms are extracellular
polymeric substances (EPS), composed of heterogeneous

materials that include proteins, lipids, and polysaccharides.19,20

EPS contain numerous functional groups, such as carboxyl,
phosphoryl, amine, and hydroxyl, and thus potentially can act as
a binding or nucleation site for heavy metals.21,22 In addition, it
was proposed that outer-membrane cytochromes (e.g., MtrC
and OmcA in Shewanella oneidensis MR-1), that mediate
enzymatic U reduction, are also localized in the EPS.23

A recent study carried out with the metal-reducing bacterium
Shewanella oneidensis MR-1 showed that the presence of
bacterial EPS is correlated with the formation of noncrystalline
U(IV) as a result of U(VI) bioreduction.15 In contrast to
crystalline uraninite (UO2), which is relatively resistant to
oxidation, noncrystalline U(IV) is more labile and susceptible
to reoxidation.24 Therefore, it is a less desirable U(IV)
bioproduct as it does not guarantee adequate immobilization
of the contaminant. Nevertheless, a field study at Rifle,
Colorado (USA) demonstrated that noncrystalline U(IV) is a
predominant species found in the subsurface after bioremedia-
tion.25,26 In light of this information, it is critical that research
focused on understanding the mechanism governing the
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formation of noncrystalline U(IV) in the subsurface include
biofilms in addition to planktonic bacteria.
Bargar et al.26 proposed that noncrystalline U(IV) was

formed as a result of abiotic U reduction, mediated by
biologically formed mackinawite (FeS), and subsequent
complexation of the produced U(IV) ions by biofilm
components, possibly bacterial EPS. Uranium isotope measure-
ments at the same U-contaminated site at Rifle showed a
progressive fractionation of the isotopes of aqueous U(VI) in
the groundwater toward lower 238U/235U, which implies the
preferential incorporation of the heavy U isotope into the
formed U(IV) solid.27 The most recent U isotope findings28

demonstrate that, in contrast to abiotic reduction, only
enzymatic U reduction results in the accumulation of 238U in
the formed U(IV) solid. The latter findings necessitate a
reevaluation of the mechanism of in situ U(VI) reduction
proposed by Bargar et al.26 The extent of isotopic shift reported
under field conditions is smaller than that obtained during
biotic U reduction in the laboratory, suggesting that a
combination of biotic and abiotic processes may be involved
in U reductive transformation in the subsurface.
The remaining uncertainty about the mechanism of non-

crystalline U(IV) formation in the environment is at the root of
the present study. The objectives of this work are to
deconvolute the mechanism(s) of U(VI) reduction under
various conditions and to identify key processes responsible for
the prevalent formation of noncrystalline U(IV) species in the
subsurface. These goals are reached through the implementa-
tion of biofilm-based experiments and the use of U isotope
signatures as a tool capable of distinguishing biotic from abiotic
U reduction.

2. MATERIALS AND METHODS
2.1. Biofilm Growing Conditions. To setup actively

growing biofilms, a pregrown culture of Desulfovibrio vulgaris
was added to sterile and anoxic MOYSL medium29 and left to
grow for 24 h. At that time, 5 or 30 mM bicarbonate and 400
μM of depleted uranyl acetate, or 400 μM of natural U(VI) in
0.1 M hydrochloric acid, were added. For the inactivated
biofilm cases, a pregrown culture of D. vulgaris was added to
sterile and anoxic MOYSL medium and allowed to grow for 4
days. Subsequently, 0.3% of sodium azide was added to the
cultures in order to inhibit further microbial activity and growth
(Figure S1 and Table S1). After 3 h of incubation with the
metabolic inhibitor, 5 mM of bicarbonate and 400 μM of
depleted uranium(VI) acetate, or 400 μM of natural U(VI) in
0.1 M hydrochloric acid, were added. In all cases, the static
biofilms were allowed to grow for 16−17 days.
2.2. Experimental Design. In order to determine the

mechanism of U reduction under field relevant conditions, six
experiments were set up (Table S2) that varied with respect to
the U(VI) reducing agents. Three main categories, biotic,
abiotic, and mixed biotic and abiotic, were set up either as an
“Fe” containing system (addition of ferrihydrite (Fh)-coated
glass slides) or as a “no-Fe” containing system (absence of Fh).
In the most complex system (mixed + Fe), containing actively
growing biofilm, 5 mM of bicarbonate, 400 μM of U, 10 mM of
sulfate, and Fh minerals (at an average concentration of 2.5
mM), a mixture of reducing agents was expected: Bacteria
produced dissolved sulfide and Fe(II) sulfide minerals (such as
mackinawite) as a result of microbial metabolism, both of which
could serve as reducing agents in addition to bacteria. In the
mixed-no-Fe system, containing actively growing biofilm, 5 mM

of bicarbonate, 400 μM of U, 10 mM of sulfate, bacteria, and
the produced dissolved sulfide species were expected to act as
reducing agents. Addition of 30 mM of bicarbonate to the
biotic systems allowed for the purely biotic reduction of U(VI)
in biofilm systems due to the formation of U(VI)−carbonate
aqueous complexes15 that precluded the sorption of U(VI)
onto the mineral phase and by this ruled out the contribution
of abiotic U reducing agents in both biotic setups. In the abiotic
systems, inactivation of biomass was performed by addition of
the metabolic inhibitor sodium azide (see the Supporting
Information for details) and thus left only dissolved sulfide and
ferrous iron sulfide minerals as the U(VI) reducing agents in
the abiotic + Fe scenario and exclusively dissolved sulfide in the
abiotic-no-Fe scenario.

2.3. Subsampling and Analytical Methods. Aliquots
(1.5 mL) were withdrawn at time intervals and filtered through
0.22 μm membranes in order to quantify the remaining
concentration of uranium(VI), sulfate, lactate, and acetate and
the buildup of sulfide. Subsamples for sulfide and sulfate were
additionally mixed with a 10% zinc acetate solution (at a 1:5
sample/zinc acetate ratio) in order to capture sulfide. All
samples were withdrawn and processed under strict anoxic and
sterile conditions. At the last time point (16 or 17 days), a
second type of sample was collected for each experimental
condition in order to quantify U(VI) adsorbed on the mineral
phase. These subsamples (unfiltered) were incubated overnight
with NaHCO3 (at a final concentration of 100 mM) to
preferentially desorb U(VI) by forming uranyl−carbonate
complexes released into solution. Subsequently, the mixture
was filtered through 0.22 μm membranes.
Uranium remaining in solution or desorbed was analyzed by

inductively coupled plasma optical emission spectrometry
(ICP-OES) or inductively coupled plasma mass spectrometry
(ICP-MS). The sulfide concentration was quantified using the
colorimetric Cline method described previously.30 Sulfate,
lactate, and acetate were measured by ion chromatography
(IC).

2.4. Solid Phase Separation. At a time point of 16 or 17
days, the static biofilm was destructively sampled by detach-
ment and homogenization of all the biofilm parts (from the
suspension and from the glass slide). Subsequently, the
resuspended solid phase (biomass associated with minerals)
was separated from the solution by centrifugation for 15 min at
8000 rpm under anoxic conditions. The solid phase collected
for each biofilm experiment was preserved frozen in double
anoxic containment (anoxic tubes inside an anoxic Mylar bag)
until further analysis.

2.5. X-ray Absorption Spectroscopy (XAS) Analysis.
Solid samples were shipped in triple anoxic containment
(anoxic tubes, Mylar bag, and anoxic steel canister) to the
Stanford Accelerator Laboratory (SLAC). X-ray absorption
spectra for uranium and iron were collected at beamline 4-1 of
the Stanford Synchrotron Radiation Lightsource (SSRL) while
XAS date for sulfur was collected at beamline 4-3. All
manipulations were conducted under strict anoxic conditions.
More detail on the XAS analysis is available in the Supporting
Information.

2.6. Isotopic Measurements. Sample and standards
preparation and purification is described in detail in the
Supporting Information. The 238U/235U isotopic composition
was measured with a Thermo Neptune Multicollector
inductively coupled plasma source mass spectrometer (MC-
ICP-MS), equipped with a “jet interface”. For sample
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introduction, an ESI Apex nebulizer (without membrane) was
coupled to the desolvation unit of a Cetac Aridus. With this set
up, an ion beam of about 4 × 10−10 A for 238U was routinely
achieved for a solution of 50 ng/g U. Mass bias correction was
applied, using the IRMM 3636A double spike and the
exponential law. Furthermore, a standard sample bracketing
method was applied; i.e., two sample measurements were

bracketed by two standard measurements. The results for all
sample analyses are reported in the delta notation relative to
the IRMM-184 standard (which was also used to conduct the
experiments):

δ = − ×
−

⎡
⎣
⎢⎢

⎤
⎦
⎥⎥U

( U/ U)

( U/ U)
1 1000238

238 235
sample

238 235
IRMM 184

Figure 1. Variation in the concentration of dissolved species (lactate in blue, acetate in purple, uranium in orange, sulfide in red and sulfate in green)
over time in biofilm experiments with iron present (+Fe) (in electron acceptor limited conditions). The left y-axis corresponds to lactate, acetate
[mM], and uranium [μM] concentrations, and the right y-axis represents sulfate and sulfide [mM] concentrations in the system. U(VI) was amended
after 1 day in the mixed and biotic systems and after 4 days in the abiotic systems (see text for explanation). Horizontal orange dashed lines mark the
total concentration of U added (400 μM). On the right side, a qualitative and quantitative visualization of U species is provided, corresponding to the
end of the experiment (16 or 17 days). Fraction of U(VI) adsorbed is reported relative to amount of U immobilized. In the mixed system, U(VI) is
removed instantaneously due to rapid sorption.
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Each sample was analyzed three times, and the precision is
reported as two standard deviations (2 S.D.) of the replicate
analyses for each sample (typically ≤0.1‰). Analytical quality,
i.e., the accuracy of the measuring protocol, has been regularly
tested by analyses of the U standards IRMM-184 and REIMEP
18-A relative to CRM-112A. The results for both standards
agreed within those previously reported in the literature.31,32

The abundance sensitivity of the MC-ICP-MS was checked
before each analysis session using a 236U-free CRM-112A
standard solution and utilized to correct the contribution from
the tail of 238U on mass 236, which was typically ≤0.1 ppm of
the 238U signal.

3. RESULTS AND DISCUSSION
Characterization of dissolved, adsorbed, and solid species in the
system enabled us to monitor the development of the D.
vulgaris static biofilms under the six main conditions: biotic,
abiotic, and mixed biotic and abiotic (henceforth, simply
referred to as “mixed”) with or without Fe and with excess
electron donor. Furthermore, it revealed the extent of U
immobilization depending on the geochemical conditions and
the available reducing agents. In addition, a combination of
solid phase characterization and isotopic measurements allowed
the identification of the uranium reduction mechanism(s)
under complex conditions and provided insight into U(VI)
reduction in the environment. Supplementary experiments
including mixed and abiotic systems under electron donor
limited conditions were examined in order to delineate the
contribution of electron donor availability to U immobilization
and reduction. Unless otherwise specified, the results and
discussion presented below focus on the six main biofilm
systems with excess electron donor, as listed in Table S2.
3.1. Metabolism and Biofilm Establishment of D.

vulgaris. The results presented in Figures 1 and S2 confirm the
heterotrophic ability of Desulfovibrio vulgaris to couple the
oxidation of an organic compound to the reduction of inorganic
compounds, i.e., sulfate, ferric iron, or hexavalent uranium. The
oxidation of lactate to acetate (consumption of dissolved lactate
species and production of acetate as seen in Figures 1 and S1)
is strictly correlated to the reduction of aqueous sulfate to
sulfide in the system, in both the presence and absence of
ferrihydrite. In all six cases, SO4

2− to HS− reduction plots
mirror exactly the lactate to acetate oxidation curves. The
concentration ratio of lactate to sulfate in the main systems was
chosen to be equivalent to three times more electron donor
than needed to reduce sulfate. Thus, only 1/3 of the lactate
present was necessary to reduce 10 mM of sulfate, which is
confirmed by data in Figures 1 and S2. The experiments were
designed this way to guarantee excess electron donor and allow
for biological reduction of hexavalent uranium.
Previous laboratory experiments33 demonstrated that, when

exposed to Fe(III), sulfate, and U(VI) with lactate as an
electron donor, D. vulgaris first reduces Fe(III), followed by
U(VI) and finally sulfate. In order to ensure the presence of
HS−, an agent capable of reducing uranium, it was crucial to
take into consideration that property when designing our
experiments. Biomass required ∼4 days to fully develop. During
this period, the electron acceptor in the form of sulfate was fully
consumed and biofilms became electron acceptor limited
(Figures 1 and S2). For the mixed and biotic systems, the
biofilm was allowed to grow for 1 day to initiate establishment
of the biofilm and accumulation of Fe(III) and sulfate reduction
products. Uranium was then added to the reactor. This timeline

was selected on the basis of our observation and previous
studies reporting visible D. vulgaris biofilm formation 15 h after
inoculation.34 This strategy enabled us to examine the behavior
of uranium with coexisting microbial activity and a variety of
reducing agents under varying carbonate concentrations (5 mM
for the mixed system and 30 mM for the biotic system). In the
abiotic system, the biofilm was allowed to fully develop (4
days) and produce reduced iron and sulfur species before
biomass inactivation and uranium addition. This approach
allowed us to monitor the reduction of U by abiotic reducing
agents in the presence of inactivated biofilm that included EPS.

3.2. Uranium Immobilization and Reduction. Depend-
ing on the biofilm scenario, the extent of uranium
immobilization varied between 85% and 100% (Figures 1 and
S2) for the systems with excess electron donor. The highest
immobilization was observed for biotic cases, where all of the
dissolved U species present initially (in the form of Ca/Mg−U-
carbonate complexes, Table S3) were transformed and no
adsorbed U(VI) was measured. In the mixed systems, the
extent of immobilization was 98% for both +Fe and no-Fe cases
and a small fraction of adsorbed U(VI) was identified within
the immobilized part: 2% for no-Fe system and 8% for +Fe
system. Significantly less uranium immobilization was measured
for abiotic cases, where the no-Fe system yielded 85%
immobilization (that included a 22% adsorbed U(VI) fraction)
and the +Fe system immobilized 89% of the total U (including
19% adsorbed U(VI)). These results suggest that microbial U
reduction can be more effective and contribute to faster
immobilization and reduction of uranium as compared to
abiotic pathways.
Interestingly, the addition of Fe(III) minerals to the systems

(+Fe cases) had a minor impact on the overall immobilization
and reduction of U. However, the growth medium in all cases
contained trace amounts of ferrous iron, and it was shown
previously that the presence of a trace amount of ferrous iron in
a 5 mM bicarbonate solution enhances U reduction by
hydrogen sulfide.35 This suggests that hydrogen sulfide is an
important and active U reducing agent in mixed and abiotic
systems (when amended with 5 mM bicarbonate) and explains
the similar level of U immobilization in the +Fe and no-Fe
system (Figures 1 and S2).
In contrast to the cases discussed above, four additional

biofilm systems run under electron donor limited conditions
with 5 mM bicarbonate were analyzed (Figure S3). The initial
amendments included 60 mM lactate and 30 mM sulfate.
Hence, complete sulfate reduction occurred and resulted in the
depletion of the electron donor. No electron donor was
available for biotic U(VI) reduction. In those systems, the
extent of U immobilization and reduction was significantly
lower than in the electron acceptor limited systems and varied
between 25% and 66% (Figure S3). This result is in agreement
with field observations36 where organic carbon concentrations
were shown to be a primary control on the extent of uranium
removal from groundwater. Interestingly, the presence of
Fe(III) minerals in the systems with electron donor limitation
resulted in enhanced U immobilization and reduction, yielding
66% U immobilization (including 6% of adsorbed U(VI)) for
the mixed + Fe system and 45% U immobilization (including
6% of adsorbed U(VI)) for the abiotic + Fe systems. In the
absence of Fe(III) minerals, 55% U immobilization (including
5% of adsorbed U(VI)) was recorded for the mixed-no-Fe
system and 25% U immobilization (including 5% of adsorbed
U(VI)) for the abiotic-no-Fe systems. This finding suggests
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that, under electron donor limited conditions, Fe(II) sulfide
minerals (the product of Fe(III) and sulfate enzymatic
reduction), aqueous sulfide, and Fe(II), as well as adsorbed
Fe(II) on the Fe(III) minerals play an important role in the
immobilization of U by enhancing reductive transformation.
However, when the electron donor becomes available, biotic
reduction becomes more significant.
Furthermore, because all the available lactate is oxidized

under electron donor limited conditions, there is accumulation
of aqueous carbonate species (acetate and CO2 are the
products of lactate oxidation in this system). A buildup of
carbonate species in solution likely triggered the observed
release of adsorbed U(VI) after the initial U(VI) reduction/
sorption phase36 (Figure S3). At the same time, however, under
electron donor limited conditions, and with the accumulation
of bicarbonate in solution, aqueous U(VI) reduction is limited
by minimal microbial activity (due to the lack of electron
donor), by the lack of abiotic U reduction mediated by redox-
active minerals, and by the inability of aqueous sulfide to reduce
carbonate-complexed U(VI).
Analysis of the solid phase (of the main six systems with

electron donor excess) by X-ray absorption spectroscopy
revealed uranium speciation in the immobilized fraction.
Thorough examination of extended X-ray absorption fine
structure (EXAFS) spectra (Figure S4) for the uranium
compounds and subsequent comparison to reference com-
pounds (LCF, Table 1) showed that, regardless of the U
reduction scenario (biotic, abiotic, mixed), reduced uranium
was present almost entirely as noncrystalline U(IV) species
(89−94%). The presence of the microbial biofilm favored the

formation of noncrystalline U(IV) by binding U(IV) within the
biofilm matrix, and by this, precluding the precipitation of
uraninite. This finding confirms the results presented
previously15 that correlated the formation of noncrystalline
U(IV) with the presence of bacterial EPS. Moreover,
noncrystalline U(IV) species were shown to be associated
with cell-bound phosphate groups pointing to the involvement
of bacterial phospholipids (one of the components of
EPS).37−39 Our results confirm as well the hypothesis
presented in the field study,26 proposing a role for the biofilm
matrix in capturing U(IV).
However, our results are in contrast to a recent study40

where enzymatic U reduction in the presence of a D. vulgaris
biofilm resulted in the formation of nanoparticulate crystalline
uraninite. This inconsistency can be explained by the difference
in initial reduction conditions: in the current study, biofilm
development was first allowed to grow for 1 day, followed by
the introduction of U(VI), mimicking the arrival of a U(VI)
plume into an aquifer with a well-established microbial
community. In the above-mentioned study,40 U(VI) was
introduced at the same time as the D. vulgaris inoculum,
allowing for concurrent bacterial growth and U reduction,
followed by sulfate reduction.33 Under these conditions,
precipitation of crystalline uraninite is favored as U(VI)
reduction occurs prior to the development of a biofilm matrix
that can interact with U(IV) ions.

3.3. Uranium Reduction Mechanism. We accounted for
the major U(VI) reduction pathways in the environment: (i)
enzymatic reduction, for which U(VI) species must be aqueous
in order for bacteria to catalyze the reduction; (ii) abiotic

Table 1. Linear Combination Fits (LCF) for Uranium, Sulfur, and Iron Species in the Solid Phase Collected at the End of the
Experiment for All Six Cases Considereda

aThe values are reported in %. The sample with a star (*) corresponds to the cases with an initial amendment of 30 mM sulfate (instead of 10 mM)
(more information in the Supporting Information).
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reduction mediated by redox active minerals, in which case
U(VI) must be adsorbed onto the mineral phase to enable the
reduction; and (iii) abiotic reduction by dissolved sulfide at
circumneutral pH. Reduction by aqueous sulfide is partially
inhibited at bicarbonate concentrations >5 mM while full
inhibition was reported at concentrations >15 mM.41 In order
to uncover the mechanism of U reduction in the mixed system
(by comparing the results to biotic and abiotic systems), (1) we
focused on the characterization of S and Fe in the solid phase
and their transformation as an indicator of FeS and HS−

involvement in U reduction, and (2) we collected and
compared the isotopic signatures of U in the aqueous and
solid phases.
3.3.1. S and Fe Solid Phase Characterization. X-ray

absorption near edge structure (XANES) spectra (Figure S5)
and subsequent comparison to reference compounds (LCF,
Table 1) revealed the sulfur and iron speciation in the solid
phase of each biofilm scenario. For the mixed-no-Fe and
abiotic-no-Fe systems, elemental sulfur (S0) was detected
exclusively, whereas for mixed + Fe and abiotic + Fe systems, a
fraction of the ferrous iron sulfide mineral mackinawite (FeS)
and a small fraction of sulfate were reported in addition to S0.
For the biotic + Fe system, sulfur was present in the form of
reduced sulfide (FeS) but no S0 was detected. Experimental
limitations resulted in no detectable S species for the biotic-no-
Fe case. XANES spectra of iron species indicated that the
majority of the iron present at the end of the experiments was
reduced (68−98%). The LCF reported a mixture of FeS
(mackinawite) and an undefined iron sulfide phase as a product
of Fe(III) and sulfate reduction by D. vulgaris. Mackinawite was
demonstrated to be the first mineral to precipitate in the
subsurface under sulfate-reducing conditions,42 and its aging
leads to the formation of more stable ferrous sulfide minerals
such as greigite or pyrite.
Formation of elemental sulfur coupled to the reduction of

U(VI) by dissolved sulfide or Fe(II) sulfide minerals is a well-
documented process.35,41,43 The presence of elemental sulfur in
the abiotic and mixed conditions is direct evidence for the
involvement of a sulfide-based reductant in the reduction of
U(VI) coupled to the oxidation of S2− to S0. Dissolved species
measurements support this conclusion: sulfate was completely

removed and sulfide species accumulated (Figures 1 and S1).
However, the concentration of dissolved sulfide is lower than
the expected 10 mM in all cases (detectable sulfide
concentration ranges from 7.5 to 8 mM at the end of the
experiment), suggesting sequestration of 20−25% of the S2−

produced with Fe(II) and/or direct oxidation of S2− to S0

coupled to U(VI) reduction to U(IV).
3.3.2. Isotopic Measurements. A recent study28 demon-

strated that the isotopic signature of enzymatically reduced
uranium (i.e., the enrichment of 238U in the reduced U pool)
was easily distinguishable from the isotopic signature of
uranium reduced abiotically by sulfide-bearing reductants (i.e.,
no isotope fractionation). Thus, U isotopes can be used as a
tool to determine the exact mechanism of U reduction in the
studied systems. The isotopic signature was measured for
unreacted U(VI) and the corresponding U(IV) solid fraction
for all the tested cases. For the biotic systems, U(VI)
measurements correspond to the remaining aqueous U(VI).
For the mixed and abiotic cases (containing 5 mM of
bicarbonate), U(VI) could be present both as dissolved and
adsorbed species and the isotopic signature was reported either
for aqueous or for a combination of aqueous and adsorbed (i.e.,
after extraction of the adsorbed species).
Table 2 presents the δ238U values together with the

corresponding fraction of aqueous uranium removed (C/C0)
for all six scenarios. In the case of the biotic systems, recorded
δ238U values of the remaining U(VI) in solution range from
−0.49 (±0.03)‰ for the biotic-no-Fe system to −0.76
(±0.06)‰ for the biotic + Fe system. These results imply
the enrichment of the light isotope in the unreacted U(VI)
fraction. Correspondingly, the biologically produced U(IV)
solid exhibits a strong positive signature (δ238U = 0.59
(±0.15)‰ for the biotic-no-Fe system and 0.45 (±0.08)‰
for the biotic + Fe system), indicating the preferential reduction
of heavy U isotopes and their accumulation in the reduced
phase.27,28,32,44−46 These results are consistent with biologically
mediated reduction.
For the abiotic cases, the results show that there was no

sustained fractionation in U(VI) (solution plus adsorbed
species) when U is reduced by redox-active minerals or
dissolved sulfide: the δ238U value reaches 0.01 (±0.12)‰ for

Table 2. δ238U Values along with Corresponding Fraction of Uranium Remaining in Solution (C/C0) for Mixed, Biotic, and
Abiotic Systems in the Absence (no-Fe) or Presence of Iron (+Fe)a

aNumbers in the brackets represent the 2 S.D. (10−2) for each of the isotopic values.
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the abiotic-no-Fe system and −0.04 (±0.04)‰ for the abiotic
+ Fe system. At the same time, U(IV) solid δ238U values yield
0.15‰ (±0.09)‰ or 0.15 ‰ (±0.06)‰, suggesting little U
isotope fractionation.
For the mixed system, where a combination of biotic and

abiotic U reducing pathways was possible, a significant
difference in U isotope fractionation in the solution-only
U(VI) samples and the solution + adsorbed U(VI) samples was
detected. While measurements of isotopic signature for the
remaining solution U(VI) indicate enrichment of the light
isotope in the dissolved fraction (δ238U = −0.68 (±0.10)‰ for
no-Fe system and δ238U = −0.62 (±0.12)‰ for Fe system),
after desorption of unreacted U(VI) from the solid phase, δ238U
values converge toward zero (0.11 (±0.05)‰ for the no-Fe
system and 0.05 (±0.05)‰ for the Fe system). This variation
stems from the distribution of U(VI) species in the system,
with a majority of U(VI) being adsorbed. A minor dissolved
fraction (representing less than 9% of total U) was accessible
for direct enzymatic reduction, thus adopting a slightly
enzymatic isotopic signature (unreacted solution U(VI)
enriched in the light isotope 235U). However, after the
desorption of adsorbed U(VI) at the same experimental time
points, the enzymatic signature is overprinted by that of the
desorbed species, resulting in near zero δ238U values. At the
same time, U(IV) solids display δ238U values of 0.11 (±0.03)‰
for the no-Fe system and 0.14 (±0.06)‰ for the Fe system,
showing little isotope fractionation and thus confirming that the
majority of the initially present U(VI) in the mixed systems was
adsorbed rapidly and reduced abiotically.
3.3.3. Mechanism of U(VI) Reduction in the Biofilms. The

main objective of our study was to delineate the mechanism of
U(VI) reduction in systems in which a mixture of biotic and
abiotic reducing agents are available. To do so, we contrasted
our laboratory mixed system with biotic and abiotic ones.
Surprisingly, the mixed system, despite the presence of active
biomass, predominantly displayed characteristics of the abiotic
system rather than mixed characteristics of the biotic and
abiotic cases. This finding implies that biotic U(VI) reduction
in mixed systems is restricted due to limited availability of
aqueous U(VI) species which, in turn, is controlled by various
factors, including the concentration of aqueous carbonate and
availability of sorption-active surfaces. During our experiments,
the lower carbonate concentration (5 mM) allowed dissolved
and adsorbed U(VI) to co-occur, whereas the higher carbonate
concentration (30 mM) allowed dissolved U−carbonate
complexes to be present exclusively. At the higher carbonate
concentration, the biotic isotope signature and the absence of
detectable elemental sulfur suggest an exclusively enzymatic U
reduction, which outcompetes abiotic reducing agents, such as
hydrogen sulfide or Fe(II) sulfide minerals. On the other hand,
when the carbonate concentration was 5 mM, the majority of
hexavalent U was adsorbed on available surfaces, resulting in U
reduction preferentially mediated via abiotic pathways while
enzymatic U reduction was limited to the marginal aqueous
U(VI) fraction available for direct microbial interaction.
Preferential abiotic reduction was evidenced by the lack of
significant fractionation in the isotopic signature and the
presence of elemental sulfur. Similar findings showing that
U(VI) speciation controls the mechanism of uranium reduction
(whether biotic or abiotic) were reported for the iron-reducing
bacterium Shewanella putrefaciens in the presence of iron
minerals47 and for the SRB Desulfovibrio aerotolerans.35 This
combination of results strongly suggests that U(VI) speciation

may be one of the critical factors controlling whether U(VI) is
reduced via a biotic or abiotic mechanism, regardless of the
microbial community.

3.4. Environmental Implications. As part of this study,
we identified the mechanism(s) of U(VI) reduction under a
variety of geochemical conditions and showed that the presence
of biofilms (whether active or inactive) resulted in the
accumulation of noncrystalline U(IV) species rather than
uraninite.
In the systems with the lower carbonate concentration and

the availability of both biotic and abiotic reducing agents,
enzymatic U reduction was outcompeted by abiotic processes
due to the partitioning of U(VI) onto the mineral phase or its
interaction with dissolved biologically produced sulfide. These
results suggest that the model proposed previously26 is
accurate, implying that U reduction in the environment is
mediated by mackinawite and followed by the sequestration of
U(IV) in the biofilm matrix. In addition to the carbonate
concentration, the mineral surface could play an important role
in controlling the dissolved/sorbed U(VI) ratio. During our
experiments, iron sulfides were freshly formed, with the
majority of their sorption sites available for U(VI) complex-
ation. However, under environmental conditions, the situation
is far more complex and several factors can determine the
equilibrium between the sorbed and aqueous fraction of U(VI).
For example, competitive adsorption of natural organic matter
onto the Fe(II) sulfide minerals should be taken into
consideration.48 If environmental conditions preclude the
quantitative sorption of U(VI), biotic processes may become
significant and even outcompete abiotic U reduction at
relatively low carbonate concentrations.
Several studies demonstrated that the addition of 30−37 mM

bicarbonate to the U-contaminated subsurface with a back-
ground concentration of bicarbonate of ∼6 mM49 allows for
enzymatic U reduction and enhanced U immobilization.50,51

This is supported by our results (biotic system) and indicates
the effectiveness of biological U reduction in the subsurface in
comparison to abiotic pathways if U(VI) is in the aqueous
phase. Moreover, microbial metabolic activity can contribute to
an increase in the bicarbonate concentration as a result of CO2
production. This, in turn, was proposed to promote the
desorption of U(VI) from the solid phase and favor microbial
reduction.36,51 However, on the basis of our experiments, the
oxidation of 20 mM lactate could not account for a large
enough increase in the carbonate concentration to enhance the
involvement of enzymatic U(VI) reduction in the overall
reductive immobilization of U. Only higher concentrations of
lactate (60 mM), as shown in this study, resulted in the
enhanced release of sorbed U(VI) (Figure S3), suggesting that
the concentration of added electron donor and the extent of its
oxidation during bioremediation are also important factors
controlling whether biotic or abiotic mechanisms of U(VI)
reduction dominate.
Laboratory-based approaches adopted in this study allowed

us to fill in knowledge gaps and bridge findings derived from
field observations at a U-contaminated site (Rifle, Colorado).
Isotopic measurement of the groundwater at this field site27

revealed that unreacted aqueous U(VI) is enriched in the light
isotope, in agreement with a biotic isotope signature.28 Thus,
the combination of these two results suggest a primarily biotic
mechanism for U(VI) reduction during remediation. In
contrast, as discussed above, another study26 concluded that
abiotic reductive mechanisms were dominant in the subsurface.
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These two results would seem to be in contradiction. However,
the findings in this study allow us to conclude that both studies
actually show the same results when interpreted correctly. The
field isotope study27 probed only solution U(VI) and found a
light isotope signature later shown to be biotic. This only shows
that reduction of aqueous U(VI) is biological. However, sorbed
U(VI) is most likely reduced via abiotic processes, which is
consistent with the study of Bargar et al.26 Thus, for a full
interpretation of isotope data, it is critical to obtain aqueous
and solid-phase isotopic samples.
Two major field implications of this study are evident. First,

biofilm growth in the subsurface will result in the formation of
noncrystalline U(IV) regardless of the mechanism of reduction.
As discussed above, noncrystalline U(IV) species are relatively
more reactive and susceptible to reoxidation than uraninite,
thus raising concerns about the long-term effectiveness of this
approach to contaminant immobilization. For this reason,
research focused on stability and aging of in situ U(IV)
(potential increase in crystallinity and resistance to remobiliza-
tion) should be prioritized in order to fully understand the
feasibility of U bioremediation. Second, this study supports and
confirms the previous laboratory and field work demonstrating
that U(VI) speciation, in particular its partitioning and
complexation behavior, controls whether a biotic or abiotic
mechanism of reduction prevails. A recent study51 showed no
significant differences in the microbial communities for the
same field site with either elevated or background bicarbonate
concentrations, confirming the hypothesis that the mechanism
of U reduction and the reduction rates are controlled by
geochemical factors, such as U(VI) speciation, rather than
biological diversity. In fact, geochemical conditions were
previously found to also indirectly control biofilm formation.15

These findings underscore the complex interaction between
geochemical and biological processes occurring at U con-
taminated sites and the need to deconvolute individual
contributions to optimize remediation strategies.
Besides the processes occurring in the terrestrial subsurface,

the findings presented here provide also important implications
for marine environments, particularly for anoxic marine basins,
such as the Black Sea. Despite the high sulfide levels in the
water column, the stability of U(VI) carbonate complexes in
seawater appears to prohibit direct abiotic U reduction in the
water column. Rather, U(VI) is assumed to be removed from
the water column by pore water diffusion into the sediment and
subsequent reduction and precipitation.52,53 These authors
speculated that U(VI) reduction in the sediment occurs
abiotically with H2S, although it was not clear why this reaction
would proceed in the sediments but not in the open water
column at similar sulfide levels. The results of this study show
that, in the presence of biofilms and high carbonate levels
(allowing the formation of stable dissolved U(VI) carbonate
complexes), microorganisms are able to effectively reduce
U(VI). This conclusion is in agreement with the heavy U
isotope signatures observed in anoxic marine sediments54,55 and
the recent finding that such signatures are a clear indicator of
biotic U reduction.28
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