21 research outputs found

    Connecting real-world digital mobility assessment to clinical outcomes for regulatory and clinical endorsement–the Mobilise-D study protocol

    Get PDF
    Background: The development of optimal strategies to treat impaired mobility related to ageing and chronic disease requires better ways to detect and measure it. Digital health technology, including body worn sensors, has the potential to directly and accurately capture real-world mobility. Mobilise-D consists of 34 partners from 13 countries who are working together to jointly develop and implement a digital mobility assessment solution to demonstrate that real-world digital mobility outcomes have the potential to provide a better, safer, and quicker way to assess, monitor, and predict the efficacy of new interventions on impaired mobility. The overarching objective of the study is to establish the clinical validity of digital outcomes in patient populations impacted by mobility challenges, and to support engagement with regulatory and health technology agencies towards acceptance of digital mobility assessment in regulatory and health technology assessment decisions. Methods/design: The Mobilise-D clinical validation study is a longitudinal observational cohort study that will recruit 2400 participants from four clinical cohorts. The populations of the Innovative Medicine Initiative-Joint Undertaking represent neurodegenerative conditions (Parkinson’s Disease), respiratory disease (Chronic Obstructive Pulmonary Disease), neuro-inflammatory disorder (Multiple Sclerosis), fall-related injuries, osteoporosis, sarcopenia, and frailty (Proximal Femoral Fracture). In total, 17 clinical sites in ten countries will recruit participants who will be evaluated every six months over a period of two years. A wide range of core and cohort specific outcome measures will be collected, spanning patient-reported, observer-reported, and clinician-reported outcomes as well as performance-based outcomes (physical measures and cognitive/mental measures). Daily-living mobility and physical capacity will be assessed directly using a wearable device. These four clinical cohorts were chosen to obtain generalizable clinical findings, including diverse clinical, cultural, geographical, and age representation. The disease cohorts include a broad and heterogeneous range of subject characteristics with varying chronic care needs, and represent different trajectories of mobility disability. Discussion: The results of Mobilise-D will provide longitudinal data on the use of digital mobility outcomes to identify, stratify, and monitor disability. This will support the development of widespread, cost-effective access to optimal clinical mobility management through personalised healthcare. Further, Mobilise-D will provide evidence-based, direct measures which can be endorsed by regulatory agencies and health technology assessment bodies to quantify the impact of disease-modifying interventions on mobility. Trial registration: ISRCTN12051706

    Efficiency and effectiveness evaluation of an automated multi-country patient count cohort system

    Get PDF
    International audienceBackgroundWith the increase of clinical trial costs during the last decades, the design of feasibility studies has become an essential process to reduce avoidable and costly protocol amendments. This design includes timelines, targeted sites and budget, together with a list of eligibility criteria that potential participants need to match.The present work was designed to assess the value of obtaining potential study participant counts using an automated patient count cohort system for large multi-country and multi-site trials: the Electronic Health Records for Clinical Research (EHR4CR) system.MethodsThe evaluation focuses on the accuracy of the patient counts and the time invested to obtain these using the EHR4CR platform compared to the current questionnaire based process. This evaluation will assess the patient counts from ten clinical trials at two different sites. In order to assess the accuracy of the results, the numbers obtained following the two processes need to be compared to a baseline number, the “alloyed” gold standard, which was produced by a manual check of patient records.ResultsThe patient counts obtained using the EHR4CR system were in three evaluated trials more accurate than the ones obtained following the current process whereas in six other trials the current process counts were more accurate. In two of the trials both of the processes had counts within the gold standard’s confidence interval.In terms of efficiency the EHR4CR protocol feasibility system proved to save approximately seven calendar days in the process of obtaining patient counts compared to the current manual process.ConclusionsAt the current stage, electronic health record data sources need to be enhanced with better structured data so that these can be re-used for research purposes. With this kind of data, systems such as the EHR4CR are able to provide accurate objective patient counts in a more efficient way than the current methods.Additional research using both structured and unstructured data search technology is needed to assess the value of unstructured data and to compare the amount of efforts needed for data preparation

    Using electronic health records for clinical research: the case of the EHR4CR project

    No full text
    International audienceOBJECTIVES: To describe the IMI EHR4CR project which is designing and developing, and aims to demonstrate, a scalable, widely acceptable and efficient approach to interoperability between EHR systems and clinical research systems. METHODS: The IMI EHR4CR project is combining and extending several previously isolated state-of-the-art technical components through a new approach to develop a platform for reusing EHR data to support medical research. This will be achieved through multiple but unified initiatives across different major disease areas (e.g. cardiovascular, cancer) and clinical research use cases (protocol feasibility, patient identification and recruitment, clinical trial execution and serious adverse event reporting), with various local and national stakeholders across several countries and therefore under various legal frameworks. RESULTS: An initial instance of the platform has been built, providing communication, security and terminology services to the eleven participating hospitals and ten pharmaceutical companies located in seven European countries. Proof-of-concept demonstrators have been built and evaluated for the protocol feasibility and patient recruitment scenarios. The specifications of the clinical trial execution and the adverse event reporting scenarios have been documented and reviewed. CONCLUSIONS: Through a combination of a consortium that brings collectively many years of experience from previous relevant EU projects and of the global conduct of clinical trials, of an approach to ethics that engages many important stakeholders across Europe to ensure acceptability, of a robust iterative design methodology for the platform services that is anchored on requirements of an underlying Service Oriented Architecture that has been designed to be scalable and adaptable, EHR4CR could be well placed to deliver a sound, useful and well accepted pan-European solution for the reuse of hospital EHR data to support clinical research studies

    Using socially assistive robots for monitoring and preventing frailty among older adults: a study on usability and user experience challenges

    Get PDF
    Socially assistive robots can play an important role in the monitoring and training of health of older adults. But before their benefits can be reaped, proper usability and a positive user experience need to be ensured. In this study, we tested the usability and user experience of a socially assistive robot (the NAO humanoid robot) to monitor and train the health of frail older adults. They were asked to complete a set of health monitoring and physical training tasks, once provided by the NAO robot, and once provided by a Tablet PC application (as a reference technology). After using each technology, they completed the System Usability Scale for usability, and a set of rating scales for perceived usefulness, enjoyment, and control. Finally, we questioned the participants’ preference for one of the technologies. All interactions were recorded on video and scrutinized for usability issues. Twenty older adults participated. They awarded both technologies ‘average’ usability scores. Perceived usefulness and enjoyment were rated as very positive for both modalities; control was scored positively. Main usability issues for NAO for these tasks were related to speech interaction (e.g., NAO’s limited speech library, NAO’s difficulty to cope with Dutch dialect), older adults’ difficulties with taking their proper role in human-robot interaction, and a lack of affordances of NAO. Seven participants preferred NAO: it was easier to use and more personal. Social robots have the potential to monitor and train the health of frail older adults, but some critical usability challenges need to be overcome first

    TransFAIR study: a European multicentre experimental comparison of EHR2EDC technology to the usual manual method for eCRF data collection

    No full text
    Purpose Regulatory authorities including the Food and Drug Administration and the European Medicines Agency are encouraging to conduct clinical trials using routinely collected data. The aim of the TransFAIR experimental comparison was to evaluate, within real-life conditions, the ability of the Electronic Health Records to Electronic Data Capture (EHR2EDC) module to accurately transfer from EHRs to EDC systems patients’ data of clinical studies in various therapeutic areas.Methods A prospective study including six clinical trials from three different sponsors running in three hospitals across Europe has been conducted. The same data from the six studies were collected using both traditional manual data entry and the EHR2EDC module. The outcome variable was the percentage of data accurately transferred using the EHR2EDC technology. This percentage was calculated considering all collected data and the data in four domains: demographics (DM), vital signs (VS), laboratories (LB) and concomitant medications (CM).Results Overall, 6143 data points (39.6% of the data in the scope of the TransFAIR study and 16.9% when considering all data) were accurately transferred using the platform. LB data represented 65.4% of the data transferred; VS data, 30.8%; DM data, 0.7% and CM data, 3.1%.Conclusions The objective of accurately transferring at least 15% of the manually entered trial datapoints using the EHR2EDC module was achieved. Collaboration and codesign by hospitals, industry, technology company, supported by the Institute of Innovation through Health Data was a success factor in accomplishing these results. Further work should focus on the harmonisation of data standards and improved interoperability to extend the scope of transferable EHR data

    Performances of a Solution to Semi-Automatically Fill eCRF with Data from the Electronic Health Record: Protocol for a Prospective Individual Participant Data Meta-Analysis.

    No full text
    International audienceClinical trial data collection still relies on a manual entry from information available in the medical record. This process introduces delay and error risk. Automating data transfer from Electronic Health Record (EHR) to Electronic Data Capture (EDC) system, under investigators' supervision, would gracefully solve these issues. The present paper describes the design of the evaluation of a technology allowing EHR to act as eSource for clinical trials. As part of the EHR2EDC project, for 6 ongoing clinical trials, running at 3 hospitals, a parallel semi-automated data collection using such technology will be conducted focusing on a limited scope of data (demographic data, local laboratory results, concomitant medication and vital signs). The evaluation protocol consists in an individual participant data prospective meta-analysis comparing regular clinical trial data collection to the semi-automated one. The main outcome is the proportion of data correctly entered. Data quality and associated workload for hospital staff will be compared as secondary outcomes. Results should be available in 2020

    Electronic health records (EHRs) in clinical research and platform trials:Application of the innovative EHR-based methods developed by EU-PEARL

    Get PDF
    Objective: Electronic Health Record (EHR) systems are digital platforms in clinical practice used to collect patients’ clinical information related to their health status and represents a useful storage of real-world data. EHRs have a potential role in research studies, in particular, in platform trials. Platform trials are innovative trial designs including multiple trial arms (conducted simultaneously and/or sequentially) on different treatments under a single master protocol. However, the use of EHRs in research comes with important challenges such as incompleteness of records and the need to translate trial eligibility criteria into interoperable queries. In this paper, we aim to review and to describe our proposed innovative methods to tackle some of the most important challenges identified. This work is part of the Innovative Medicines Initiative (IMI) EU Patient-cEntric clinicAl tRial pLatforms (EU-PEARL) project's work package 3 (WP3), whose objective is to deliver tools and guidance for EHR-based protocol feasibility assessment, clinical site selection, and patient pre-screening in platform trials, investing in the building of a data-driven clinical network framework that can execute these complex innovative designs for which feasibility assessments are critically important. Methods: ISO standards and relevant references informed a readiness survey, producing 354 criteria with corresponding questions selected and harmonised through a 7-round scoring process (0–1) in stakeholder meetings, with 85% of consensus being the threshold of acceptance for a criterium/question. ATLAS cohort definition and Cohort Diagnostics were mainly used to create the trial feasibility eligibility (I/E) criteria as executable interoperable queries. Results: The WP3/EU-PEARL group developed a readiness survey (eSurvey) for an efficient selection of clinical sites with suitable EHRs, consisting of yes-or-no questions, and a set-up of interoperable proxy queries using physicians’ defined trial criteria. Both actions facilitate recruiting trial participants and alignment between study costs/timelines and data-driven recruitment potential.Conclusion: The eSurvey will help create an archive of clinical sites with mature EHR systems suitable to participate in clinical trials/platform trials, and the interoperable proxy queries of trial eligibility criteria will help identify the number of potential participants. Ultimately, these tools will contribute to the production of EHR-based protocol design.</p
    corecore