32 research outputs found

    The Corticofugal Neuron-Associated Genes ROBO1, SRGAP1, and CTIP2 Exhibit an Anterior to Posterior Gradient of Expression in Early Fetal Human Neocortex Development

    Get PDF
    Developing neocortical progenitors express transcription factors in gradients that induce programs of region-specific gene expression. Our previous work identified anteriorly upregulated expression gradients of a number of corticofugal neuron-associated gene probe sets along the anteriorā€“posterior axis of the human neocortex (8-12 postconceptional weeks [PCW]). Here, we demonstrate by real-time polymerase chain reaction, in situ hybridization and immunohistochemistry that 3 such genes, ROBO1, SRGAP1, and CTIP2 are highly expressed anteriorly between 8-12 PCW, in comparison with other genes (FEZF2, SOX5) expressed by Layer V, VI, and subplate neurons. All 3 were prominently expressed by early postmitotic neurons in the subventricular zone, intermediate zone, and cortical plate (CP) from 8 to 10 PCW. Between 12 and 15 PCW expression patterns for ER81 and SATB2 (Layer V), TBR1 (Layer V/VI) and NURR1 (Layer VI) revealed Layer V forming. By 15 PCW, ROBO1 and SRGAP1 expression was confined to Layer V, whereas CTIP2 was expressed throughout the CP anteriorly. We observed ROBO1 and SRGAP1 immunoreactivity in medullary corticospinal axons from 11 PCW onward. Thus, we propose that the coexpression of these 3 markers in the anterior neocortex may mark the early location of the human motor cortex, including its corticospinal projection neurons, allowing further study of their early differentiation

    Increased circulating levels of Factor H-Related Protein 4 are strongly associated with age-related macular degeneration.

    Get PDF
    Funder: V.C. was primarily funded by the Department of Healthā€™s NIHR Biomedical Research Centre for Ophthalmology at Moorfields Eye Hospital and UCL Institute of Ophthalmology, and an MRC research grant (MR/P025838/1)Age-related macular degeneration (AMD) is a leading cause of blindness. Genetic variants at the chromosome 1q31.3 encompassing the complement factor H (CFH, FH) and CFH related genes (CFHR1-5) are major determinants of AMD susceptibility, but their molecular consequences remain unclear. Here we demonstrate that FHR-4 plays a prominent role in AMD pathogenesis. We show that systemic FHR-4 levels are elevated in AMD (P-valueā€‰=ā€‰7.1ā€‰Ć—ā€‰10-6), whereas no difference is seen for FH. Furthermore, FHR-4 accumulates in the choriocapillaris, Bruch's membrane and drusen, and can compete with FH/FHL-1 for C3b binding, preventing FI-mediated C3b cleavage. Critically, the protective allele of the strongest AMD-associated CFH locus variant rs10922109 has the highest association with reduced FHR-4 levels (P-valueā€‰=ā€‰2.2ā€‰Ć—ā€‰10-56), independently of the AMD-protective CFHR1-3 deletion, and even in those individuals that carry the high-risk allele of rs1061170 (Y402H). Our findings identify FHR-4 as a key molecular player contributing to complement dysregulation in AMD

    C9orf72 expansion within astrocytes reduces metabolic flexibility in amyotrophic lateral sclerosis

    Get PDF
    It is important to understand how the disease process affects the metabolic pathways in amyotrophic lateral sclerosis and whether these pathways can be manipulated to ameliorate disease progression. To analyse the basis of the metabolic defect in amyotrophic lateral sclerosis we used a phenotypic metabolic profiling approach. Using fibroblasts and reprogrammed induced astrocytes from C9orf72 and sporadic amyotrophic lateral sclerosis cases we measured the production rate of reduced nicotinamide adenine dinucleotides (NADH) from 91 potential energy substrates simultaneously. Our screening approach identified that C9orf72 and sporadic amyotrophic lateral sclerosis induced astrocytes have distinct metabolic profiles compared to controls and displayed a loss of metabolic flexibility that was not observed in fibroblast models. This loss of metabolic flexibility, involving defects in adenosine, fructose and glycogen metabolism, as well as disruptions in the membrane transport of mitochondrial specific energy substrates, contributed to increased starvation induced toxicity in C9orf72 induced astrocytes. A reduction in glycogen metabolism was attributed to loss of glycogen phosphorylase and phosphoglucomutase at the protein level in both C9orf72 induced astrocytes and induced neurons. In addition, we found alterations in the levels of fructose metabolism enzymes and a reduction in the methylglyoxal removal enzyme GLO1 in both C9orf72 and sporadic models of disease. Our data show that metabolic flexibility is important in the CNS in times of bioenergetic stress

    Modulation of growth factor function by additional extracellular signals in CNS neurones and glia

    No full text
    The development of the CNS involves complex processes and mechanisms requiring a multitude of epigentic factors. Even single epigenetic factors themselves often have diverse effects on the same cells. FGF-2, for example, is a potent mitogen and differentiation factor for astroglia during both the development and regeneration of the CNS, while the neurotrophin BDNF can induce synaptic activation, growth of dendrites, and promote survival of neurons. The mechanisms by which these factors can exert multiple effects are presently not well defined. Therefore, it is hypothesised here that additional factors are required to serve a modulating role. Two systems from the nervous system are studied: (i) the effects of additional signals, specifically cAMP, on the function, and signalling of FGF-2 in glia cells, and (ii) the effects of similar factors on neurotrophin-induced survival in CNS neurons

    C9ORF72 transcription in a frontotemporal dementia case with two expanded alleles

    No full text
    Discovery of intronic hexanucleotide repeat expansions of the C9ORF72 gene in a significant proportion of patients with amyotrophic lateral sclerosis (ALS) and frontotemporal dementia (FTD)1,2 was an important step for research into these disorders. The C9ORF72 genetic variant is more common than other described mutations and, unlike patients with mutations in SOD1, C9ORF72-ALS clinically and pathologically resembles the more numerous sporadic form.3 However, progress has been limited by lack of understanding of the function of the C9ORF72 locus in health and disease. It is unknown whether the expansion causes disease by a gain of toxicity, or whether it disrupts expression of the wild-type protein encoded by the C9ORF72 gene, or some combination of both mechanisms.1,2,

    Characteristics of subjects taking part in the study.

    No full text
    <p>Table indicating patient and control IDs used for this study, as well as blood sample extraction date, age, gender, diagnosis and whether patient was treated with Riluzole. Controls that were matched to patients are also indicated (Mā€Š=ā€Šmale, Fā€Š=ā€Šfemale, Rā€Š=ā€Štreated with Riluzole, Pā€Š=ā€Špartner, NBLD RELā€Š=ā€Šnon-blood relative). Samples from underlined patients and controls were used in PCR validation.</p
    corecore