9 research outputs found

    The Historical Complexity of Tree Height Growth Dynamic Associated with Climate Change in Western North America

    No full text
    The effect of climate on tree growth has received increased interest in the context of climate change. However, most studies have been limited geographically and with respect to species. Here, sixteen tree species of western North America were used to investigate the response of trees to climate change. Forest inventory data from 36,944 stands established between 1600 and 1968 throughout western North America were summarized. The height growth (top height at a breast‐height age of 50 years) of healthy dominant and co‐dominant trees was related to annual and summer temperatures, the annual and summer Palmer Drought Severity Indexes (PDSIs), and the tree establishment date (ED). Climate‐induced height growth patterns were then tested to determine links to the spatial environment (geographic locations and soil properties), the species’ range (coastal, interior, or both), and traits (shade tolerance and leaf form). Analysis was performed using a linear mixed model (total species) and a general linear model (species scale). Climate change was globally beneficial, except for Alaska yellow‐cedar (Chamaecyparis nootkatensis (D. Don) Spach), and growth patterns were magnified for coastal‐ranged, high‐shade‐tolerant, and broadleaf species, and mostly at the northernmost extents of these species’ ranges. Nevertheless, growth patterns were more complex with respect to soil properties. A growth decline for some species was observed at higher latitudes and elevations and was possibly related to increased cloudiness, precipitation, or drought (in interior areas). These results highlight the spatio‐temporal complexity of the growth response to recent global climate change. height growth; site index; global climate change; species range; species characteristics; species ecological amplitude; geographic locations; western North Americ

    The Historical Complexity of Tree Height Growth Dynamic Associated with Climate Change in Western North America

    Get PDF
    The effect of climate on tree growth has received increased interest in the context of climate change. However, most studies have been limited geographically and with respect to species. Here, sixteen tree species of western North America were used to investigate the response of trees to climate change. Forest inventory data from 36,944 stands established between 1600 and 1968 throughout western North America were summarized. The height growth (top height at a breast‐height age of 50 years) of healthy dominant and co‐dominant trees was related to annual and summer temperatures, the annual and summer Palmer Drought Severity Indexes (PDSIs), and the tree establishment date (ED). Climate‐induced height growth patterns were then tested to determine links to the spatial environment (geographic locations and soil properties), the species’ range (coastal, interior, or both), and traits (shade tolerance and leaf form). Analysis was performed using a linear mixed model (total species) and a general linear model (species scale). Climate change was globally beneficial, except for Alaska yellow‐cedar (Chamaecyparis nootkatensis (D. Don) Spach), and growth patterns were magnified for coastal‐ranged, high‐shade‐tolerant, and broadleaf species, and mostly at the northernmost extents of these species’ ranges. Nevertheless, growth patterns were more complex with respect to soil properties. A growth decline for some species was observed at higher latitudes and elevations and was possibly related to increased cloudiness, precipitation, or drought (in interior areas). These results highlight the spatio‐temporal complexity of the growth response to recent global climate change. height growth; site index; global climate change; species range; species characteristics; species ecological amplitude; geographic locations; western North AmericapublishedVersio

    Temporal and spatial patterns of mitochondrial haplotype and species distributions in Siberian larches inferred from ancient environmental DNA and modeling

    Get PDF
    Abstract Changes in species’ distributions are classically projected based on their climate envelopes. For Siberian forests, which have a tremendous significance for vegetation-climate feedbacks, this implies future shifts of each of the forest-forming larch (Larix) species to the north-east. However, in addition to abiotic factors, reliable projections must assess the role of historical biogeography and biotic interactions. Here, we use sedimentary ancient DNA and individual-based modelling to investigate the distribution of larch species and mitochondrial haplotypes through space and time across the treeline ecotone on the southern Taymyr peninsula, which at the same time presents a boundary area of two larch species. We find spatial and temporal patterns, which suggest that forest density is the most influential driver determining the precise distribution of species and mitochondrial haplotypes. This suggests a strong influence of competition on the species’ range shifts. These findings imply possible climate change outcomes that are directly opposed to projections based purely on climate envelopes. Investigations of such fine-scale processes of biodiversity change through time are possible using paleoenvironmental DNA, which is available much more readily than visible fossils and can provide information at a level of resolution that is not reached in classical palaeoecology

    Global patterns and environmental drivers of forest functional composition

    No full text
    Aim: To determine the relationships between the functional trait composition of forest communities and environmental gradients across scales and biomes and the role of species relative abundances in these relationships. Location: Global. Time period: Recent. Major taxa studied: Trees. Methods: We integrated species abundance records from worldwide forest inventories and associated functional traits (wood density, specific leaf area and seed mass) to obtain a data set of 99,953 to 149,285 plots (depending on the trait) spanning all forested continents. We computed community-weighted and unweighted means of trait values for each plot and related them to three broad environmental gradients and their interactions (energy availability, precipitation and soil properties) at two scales (global and biomes). Results: Our models explained up to 60% of the variance in trait distribution. At global scale, the energy gradient had the strongest influence on traits. However, within-biome models revealed different relationships among biomes. Notably, the functional composition of tropical forests was more influenced by precipitation and soil properties than energy availability, whereas temperate forests showed the opposite pattern. Depending on the trait studied, response to gradients was more variable and proportionally weaker in boreal forests. Community unweighted means were better predicted than weighted means for almost all models. Main conclusions: Worldwide, trees require a large amount of energy (following latitude) to produce dense wood and seeds, while leaves with large surface to weight ratios are concentrated in temperate forests. However, patterns of functional composition within-biome differ from global patterns due to biome specificities such as the presence of conifers or unique combinations of climatic and soil properties. We recommend assessing the sensitivity of tree functional traits to environmental changes in their geographic context. Furthermore, at a given site, the distribution of tree functional traits appears to be driven more by species presence than species abundance.</p

    Global patterns and environmental drivers of forest functional composition

    No full text
    International audienceAim: To determine the relationships between the functional trait composition of forest communities and environmental gradients across scales and biomes and the role of species relative abundances in these relationships. Location: Global. Time: period Recent. Major taxa studied Trees. Methods: We integrated species abundance records from worldwide forest inventories and associated functional traits (wood density, specific leaf area and seed mass) to obtain a data set of 99,953 to 149,285 plots (depending on the trait) spanning all forested continents. We computed community-weighted and unweighted means of trait values for each plot and related them to three broad environmental gradients and their interactions (energy availability, precipitation and soil properties) at two scales (global and biomes). Results: Our models explained up to 60% of the variance in trait distribution. At global scale, the energy gradient had the strongest influence on traits. However, within-biome models revealed different relationships among biomes. Notably, the functional composition of tropical forests was more influenced by precipitation and soil properties than energy availability, whereas temperate forests showed the opposite pattern. Depending on the trait studied, response to gradients was more variable and proportionally weaker in boreal forests. Community unweighted means were better predicted than weighted means for almost all models. Main conclusions: Worldwide, trees require a large amount of energy (following latitude) to produce dense wood and seeds, while leaves with large surface to weight ratios are concentrated in temperate forests. However, patterns of functional composition within-biome differ from global patterns due to biome specificities such as the presence of conifers or unique combinations of climatic and soil properties. We recommend assessing the sensitivity of tree functional traits to environmental changes in their geographic context. Furthermore, at a given site, the distribution of tree functional traits appears to be driven more by species presence than species abundance

    Global patterns and environmental drivers of forest functional composition

    Get PDF
    Aim: To determine the relationships between the functional trait composition of forest communities and environmental gradients across scales and biomes and the role of species relative abundances in these relationships. Location: Global. Time period: Recent. Major taxa studied: Trees. Methods: We integrated species abundance records from worldwide forest inventories and associated functional traits (wood density, specific leaf area and seed mass) to obtain a data set of 99,953 to 149,285 plots (depending on the trait) spanning all forested continents. We computed community-weighted and unweighted means of trait values for each plot and related them to three broad environmental gradients and their interactions (energy availability, precipitation and soil properties) at two scales (global and biomes). Results: Our models explained up to 60% of the variance in trait distribution. At global scale, the energy gradient had the strongest influence on traits. However, within-biome models revealed different relationships among biomes. Notably, the functional composition of tropical forests was more influenced by precipitation and soil properties than energy availability, whereas temperate forests showed the opposite pattern. Depending on the trait studied, response to gradients was more variable and proportionally weaker in boreal forests. Community unweighted means were better predicted than weighted means for almost all models. Main conclusions: Worldwide, trees require a large amount of energy (following latitude) to produce dense wood and seeds, while leaves with large surface to weight ratios are concentrated in temperate forests. However, patterns of functional composition within-biome differ from global patterns due to biome specificities such as the presence of conifers or unique combinations of climatic and soil properties. We recommend assessing the sensitivity of tree functional traits to environmental changes in their geographic context. Furthermore, at a given site, the distribution of tree functional traits appears to be driven more by species presence than species abundance.</p
    corecore