26 research outputs found

    2-(3-Methyl­but-2-en-1-yl)-1,2-benziso­thia­zol-3(2H)-one 1,1-dioxide

    Get PDF
    In the title compound, C12H13NO3S, a saccharin derivative, the dihedral angle between the aromatic and isothia­zole rings is 2.91 (12)°. The planar 3,3-dimethyl­allyl group [maximum deviation = 0.0086 (16) Å] is oriented at dihedral angles of 71.86 (7) and 74.35 (7)° with respect to the aromatic and isothia­zole rings, respectively. In the crystal structure, weak inter­molecular C—H⋯O inter­actions link the mol­ecules into chains along the c axis. A weak C—H⋯π inter­action is also present

    Used engine oil as alternate binder for buildings – a comparative study

    Get PDF
    At present, global warming and climate change are the major challenges of foremost significance that substantially influence the earth's environment. The construction sector, especially buildings, is one of the largest sources of greenhouse gas emissions. Conventional building materials such as clay bricks and cement are considered as environmentally unfriendly due to enormous emissions during their production. This paper investigates the utilisation of used engine oil (UEO) as an alternative to the usual cementitious binders. Prototypes were produced from UEO to optimise the compositions and conditions of the process and tested for compressive and flexural strength, permeability and water absorption, respectively, following the ASTM standards. Furthermore, environmental and weathering aspects were also demonstrated to ensure the feasibility of the product. Samples constituting 5% by weight UEO have shown significant results for flexural stress, compressive strength and water absorption and also passed the permeability test. Moreover, 5% of UEO samples have negligible effect in strength for accelerated weathering conditions as demonstrated by the ultraviolet test. Conclusively, UEO can be used as a replacement to conventional binding materials such as a clay bricks and cement. Sustainable development and waste management are the hallmarks of this research. </jats:p

    Global, regional, and national burden of colorectal cancer and its risk factors, 1990–2019: a systematic analysis for the Global Burden of Disease Study 2019

    Get PDF
    Funding: F Carvalho and E Fernandes acknowledge support from Fundação para a Ciência e a Tecnologia, I.P. (FCT), in the scope of the project UIDP/04378/2020 and UIDB/04378/2020 of the Research Unit on Applied Molecular Biosciences UCIBIO and the project LA/P/0140/2020 of the Associate Laboratory Institute for Health and Bioeconomy i4HB; FCT/MCTES through the project UIDB/50006/2020. J Conde acknowledges the European Research Council Starting Grant (ERC-StG-2019-848325). V M Costa acknowledges the grant SFRH/BHD/110001/2015, received by Portuguese national funds through Fundação para a Ciência e Tecnologia (FCT), IP, under the Norma Transitória DL57/2016/CP1334/CT0006.proofepub_ahead_of_prin

    The global burden of cancer attributable to risk factors, 2010-19 : a systematic analysis for the Global Burden of Disease Study 2019

    Get PDF
    Background Understanding the magnitude of cancer burden attributable to potentially modifiable risk factors is crucial for development of effective prevention and mitigation strategies. We analysed results from the Global Burden of Diseases, Injuries, and Risk Factors Study (GBD) 2019 to inform cancer control planning efforts globally. Methods The GBD 2019 comparative risk assessment framework was used to estimate cancer burden attributable to behavioural, environmental and occupational, and metabolic risk factors. A total of 82 risk-outcome pairs were included on the basis of the World Cancer Research Fund criteria. Estimated cancer deaths and disability-adjusted life-years (DALYs) in 2019 and change in these measures between 2010 and 2019 are presented. Findings Globally, in 2019, the risk factors included in this analysis accounted for 4.45 million (95% uncertainty interval 4.01-4.94) deaths and 105 million (95.0-116) DALYs for both sexes combined, representing 44.4% (41.3-48.4) of all cancer deaths and 42.0% (39.1-45.6) of all DALYs. There were 2.88 million (2.60-3.18) risk-attributable cancer deaths in males (50.6% [47.8-54.1] of all male cancer deaths) and 1.58 million (1.36-1.84) risk-attributable cancer deaths in females (36.3% [32.5-41.3] of all female cancer deaths). The leading risk factors at the most detailed level globally for risk-attributable cancer deaths and DALYs in 2019 for both sexes combined were smoking, followed by alcohol use and high BMI. Risk-attributable cancer burden varied by world region and Socio-demographic Index (SDI), with smoking, unsafe sex, and alcohol use being the three leading risk factors for risk-attributable cancer DALYs in low SDI locations in 2019, whereas DALYs in high SDI locations mirrored the top three global risk factor rankings. From 2010 to 2019, global risk-attributable cancer deaths increased by 20.4% (12.6-28.4) and DALYs by 16.8% (8.8-25.0), with the greatest percentage increase in metabolic risks (34.7% [27.9-42.8] and 33.3% [25.8-42.0]). Interpretation The leading risk factors contributing to global cancer burden in 2019 were behavioural, whereas metabolic risk factors saw the largest increases between 2010 and 2019. Reducing exposure to these modifiable risk factors would decrease cancer mortality and DALY rates worldwide, and policies should be tailored appropriately to local cancer risk factor burden. Copyright (C) 2022 The Author(s). Published by Elsevier Ltd. This is an Open Access article under the CC BY 4.0 license.Peer reviewe

    Sustainable and Eco-Friendly Vege Roofing Tiles: An Innovative Bio-Composite

    No full text
    This paper presents a research study conducted on the usage of vegetable oil for the production of eco-friendly Vege roofing tiles. Conventional roofing tiles which constitute of concrete and clay are considered as environmentally unfriendly because of the significant amount of greenhouse gas emission during their production. An entirely novel methodology of utilizing catalyzed vegetable oil is proposed which can totally replace the use of traditional binders like cement and clay. Limited trails conducted on prototypes samples revealed that when catalyzed vegetable oil mixed with aggregates, properly compacted and heat cured at 190oC for 24 hours, have shown flexural strength up to 9.5 MPa. The superior strength gain of these prototype samples was considered due to the use of the catalyst with vegetable oil, which resulted in the initiation of catalytic oxy-polymerization set of reactions during heat curing, converting vegetable oil to solid, hard polymer which is considered responsible for strength achievement factor for these novel Vege roofing tiles. All prototypes samples were tested for performance indicators like water absorption, permeability, and flexural strength according to ASTM standards. Moreover, the susceptibility of oil leachate from the tiles oil, when tested using electrical conductivity method showed a negligible amount of the electrical conductivity. Moreover, the estimated embodied energy requirements for these tiles were found quite less when compared to conventional tiles.</jats:p
    corecore