8 research outputs found

    Understanding the link between the detection limit and the energy stability of two quercetin–antimony complexes by means of conceptual DFT

    Get PDF
    In view of the importance of quercetin and its derivatives in trace metal analyses, two organometallic complexes formed between quercetin (Q) and quercetin-5-sulfonic acid (QSA) with antimony metal, were theoretically studied via density functional theory (DFT) calculations. In this study, the concept of detection limit in electroanalysis was correlated to quantum chemical calculations for antimony trace analysis in aqueous solution by using Q and QSA as ligands. Based on two previous reports, the study was carried out experimentally using polarography where the working electrode was a dropping mercury electrode. The DFT calculations were performed with B3LYP and LSDA functionals as implemented in Gaussian 09 program and by employing the 6-31G(d) and 3-21G(d) basis sets, respectively. The results show a very strong relationship between the total energy of antimony complexes and the detection limit; thus, the more stable complex has a better detection limit value. Based on the Fukui functions, the calculated parameters such as local nucleophilicity indices and HOMO-1 electronic density of the ligands show a high interaction of antimony ion (III) with quercetin-5-sulfonic acid than that with quercetin. This finding was in good accord with the experimental results

    NZF Nanoscale Particles: Synthesis, Characterization and its Effective Adsorption of Bromophenol Blue

    Get PDF
    The ferrospinels NixZn1_xFe2O4 (x = 0.0 and 0.6) nanoparticles (NPs) were successfully prepared by a sol-gel method and analyzed by TGA/DTA, XRD, SEM-EDS, UV-Vis-DRS, and pHIEP. The adsorption potential of NZF NPs towards the Bromophenol blue (BPB) dye was investigated. The batch adsorption efficiency parameters were studied including contact time, pH, initial dye concentrations and catalyst dosage. Results indicated that NZF crystallized in single-phase and exhibited smaller crystallite size (49 nm vs. 59.24 nm) than that of the pristine (ZF). The SEM analysis showed that the materials are elongated-like shape. NZF catalyst showed a red-shift of absorption bands and a more narrowed band gap (2.30 eV vs. 1.65 eV) as compared to ZF. The adsorption process was found to be highly dependent to the pH of the solution, dye concentration and adsorbent dose. Under optimum conditions of 5 mg.L–1 BPB, 0.5 g.L–1 NZF catalyst, pH = 6, and 25 °C, up to ≈ 86.30%  removal efficiency could be achieved after 60 min. Pseudo-second-order kinetic model gave the best fit with highest correlation coefficients (R2 ≥ 0.99). A high specific surface area, a stabilized dispersion state of NZF NPs and the electrostatic interaction between the BPB-2 anions and the NZF-H3O+active sites on NZF surface were believed to be the main factors that can be responsible for the high adsorption efficiency. Copyright © 2021 by Authors, Published by BCREC Group. This is an open access article under the CC BY-SA License (https://creativecommons.org/licenses/by-sa/4.0). 

    Experimental and Theoretical Studies of Eosin Y Dye as Corrosion Inhibitors for Carbon Steel in Perchloric Acid Solution

    No full text
    The adsorption behavior and the inhibition performance of Eosin Y Dye for carbon steel corrosion in 1 M perchloric acid solution have been carried using weight loss and scanning electron micrograph (SEM) techniques as well theoretical calculations based on density functional theory (DFT). The studied inhibitor concentrations were between 5´10-5 M and 5´10-3 M. Results obtained revealed that Eosin Y is an effective inhibitor and its inhibition efficiency increases with increasing concentration to attain 96.91% at 5´10-3 M at 30 °C. Thermodynamic parameters such as adsorption heat, adsorption entropy and adsorption free energy were obtained from experimental data of the temperature studies of the inhibition process at five temperatures ranging from 20 to 60 °C. It was found that the adsorption of Eosin Y could prevent steel from weight loss and the adsorption accorded with the Langmuir adsorption isotherm. The free energy of adsorption showed that the corrosion inhibition takes place by spontaneous physicochemical adsorption of inhibitor molecules on the carbon steel surface. SEM and DFT studies confirm the adsorption of Eosin Y on carbon steel surface. Copyright © 2020 by Authors, Published by BCREC Group. This is an open access article under the CC BY-SA License (https://creativecommons.org/licenses/by-sa/4.0)
    corecore