10 research outputs found

    An innovative cooling technique for floating photovoltaic module: Adoption of partially submerged angle fins

    No full text
    Once the temperature of a photovoltaic panel elevates, two major impacts occur: a significant loss in output power and thermal deterioration, which severely shortens the panel's lifespan. Non-uniform distribution of working temperatures and hence heat spots promote power loss and long-term thermal deterioration. As an electronic power generator, a solar photovoltaic panel requires prompt heat removal from its surfaces to tackle such issues. This is accomplished in the current study by utilizing a novel design heat sink composed of partially submerged angle perforating fins (PSAPF) targeted at increasing heat dissipation from a floating photovoltaic system (FPV). The proposed PSAPF was experimentally investigated for excess heat removal from FPV via both air and water mediums under Mediterranean outdoor environments at Port Said, Egypt. It was demonstrated that in the presence of a surface water current of 0.3 m/s, wind of 5 m/s with direction of 60°, employing PSAPF was considerably more efficient, with 22.77% more productivity and a 33.31% operating temperature reduction when compared to a conventional FPV system. A regression equation has been formed to predict the performance of the designed system through several factors affecting its performance over a wide range of variances

    A technical and economic evaluation of floating photovoltaic systems in the context of the water-energy nexus

    No full text
    Energy and water scarcity are increasingly global challenges that should be addressed collaboratively. Accordingly, floating photovoltaic systems (FPV), which are mounted on the water's surface, are gaining global acceptance. This system offers several unique benefits over land-based ones, including land preservation, water saving, and enhancing system efficiency. This research seeks to experimentally assess and compare the performance of the FPV with those of a conventional land-based system (LPV) in a Mediterranean climate. To that aim, both the FPV and the LPV are analyzed in terms of electrical and thermal performance, evaporation mitigation, environmental and economic considerations at varied module tilt angles (10°, 15°, 20°, and 30°). The findings reveal that adjusting the FPV tilt to 10° reduces the module temperature by 7.24 °C, leading to a 16 % reduction compared to LPV due to the water surface proximity. The FPV deployment at a tilt of 10° reduced the evaporation by 83.33 %. The FPV surpasses the LPV installed at a tilt angle of 20° by 8.92 % in power generation. It's confirmed that the FPV system produces electricity with a LCOE of 0.059 $/kWh with the potential of saving 2.19 m3/m2 of water vapor annually, which mitigates 5.20 kg of CO2/m2/year

    Simulation and experimental performance analysis of partially floating PV system in windy conditions

    No full text
    The floating solar photovoltaic system (FPVT) is a new concept for solar energy harvesting that contributes to growing energy demand but with higher performance compared to the land-based system (LBPV). The working temperature of an FPVT system is lower and the efficiency is better than that of an LBPV system. The current experimental study aims to further enhance the superiority of floating PV technology through an innovative partially floating (FPVWS) system for more energy harvest. The underwater portion allows reliable temperature management for the PV system via mutual heat transfer with the ambient water and consequently enhances the electricity production. Then an experimental floating set up has been constructed to examine the performance of the new FPVWS system under real windy conditions and the reason for such dominance was explained. The acquired data demonstrated that the working temperature of the FPVWS reduced by11.60%, the output power rose by about 20.28%, and the electrical efficiency rose by 32.82% at a 49% increment in wind speed. The performance of the FPVT module is improved with the submerging technique and the favorable northerly-westerly wind flow direction, which provided the most gain to its performance. The levelized cost of energy decreased by 17% along with a reduction in global average CO2 emissions of 69.51 kg CO2/summer season at a 49% increment in wind speed

    Performance and potential of a novel floating photovoltaic system in Egyptian winter climate on calm water surface

    No full text
    This article investigates the performance of a partially submerged floating photovoltaic system (PSFPV) as a proposal for harvesting solar energy as an electricity production novel system under Egyptian hot climate on calm water surfaces. The proposed system comprised of a floating photovoltaic system with a submerged portion in the surrounding water. The PSFPV system is constructed in addition to the water body and is then extensively examined under Egyptian outdoor conditions. The submerged portion of the PSFPV system keeps the system passively cool by being in direct contact with the surrounding water. A performance comparison between the novel PSFPV system and a similar land-based photovoltaic system (LPV) is also provided. The suggested PSFPV module's thermal and electrical performance was evaluated concerning its submerged length, which ranged from 4 to 24 cm. The results reveal that the PSFPV system achieves a reduction of about 15.10% in operating temperature relative to the LPV system. Also, the PSFPV system produces up to 20.76% more electricity than the LPV system. The PSFPV system is capable of alleviating the emission of CO2 by about 49.66 kg/summer season. The proposed PSFPV system reveals a reduction in the LCOE from 0.075 to 0.067 ($/kWh) by increasing the submerged length from 4 to 24 cm

    Conceptual design of a novel partially floating photovoltaic integrated with smart energy storage and management system for Egyptian north lakes

    No full text
    With the recent increase in energy demand due to social, development and economic reasons in Egypt, solar energy is one of the most abundant renewable energy resources which can be utilized to meet these needs. Although Photovoltaic (PV) technology has been used with large scale in Egypt in different applications, it’s still suffering from losing its efficiency due to high temperature, dust accumulation which is common in Egypt especially in spring and summer seasons, besides the intense land requirements and power intermittency. Therefore, a novel partially floating modular PV system is proposed in this study to supply rural areas around the Egyptian North Lakes with green electricity. The PV system is integrated with a hybrid compressed air energy storage system and managed with a smart energy management strategy to extend its operating hours and enables its day and night continuous operation. The smart system also enables different operational modes of the PV system which includes sun tracking, cleaning, cooling, and surviving modes. The aim of this study is to introduce the conceptual design of the proposed concept and the smart controlling system, its different operational modes, the supporting platform and its hydrodynamics performance
    corecore