12 research outputs found

    Axin2/Conductin Is Required for Normal Haematopoiesis and T Lymphopoiesis

    Get PDF
    The development of T lymphocytes in the thymus and their stem cell precursors in the bone marrow is controlled by Wnt signaling in strictly regulated, cell-type specific dosages. In this study, we investigated levels of canonical Wnt signaling during hematopoiesis and T cell development within the Axin2-mTurquoise2 reporter. We demonstrate active Wnt signaling in hematopoietic stem cells (HSCs) and early thymocytes, but also in more mature thymic subsets and peripheral T lymphocytes. Thymic epithelial cells displayed particularly high Wnt signaling, suggesting an interesting crosstalk between thymocytes and thymic epithelial cells (TECs). Additionally, reporter mice allowed us to investigate the loss of Axin2 function, demonstrating decreased HSC repopulation upon transplantation and the partial arrest of early thymocyte development in Axin2Tg/Tg full mutant mice. Mechanistically, loss of Axin2 leads to supraphysiological Wnt levels that disrupt HSC differentiation and thymocyte development

    Localization and potential role of matrix metalloproteinase-1 and tissue inhibitors of metalloproteinase-1 and -2 in different phases of bronchopulmonary dysplasia

    Get PDF
    Bronchopulmonary dysplasia (BPD) can evolve in prematurely born infants who require mechanical ventilation because of hyaline membrane disease (HMD). The development of BPD can be divided in an acute, a regenerative, a transitional, and a chronic phase. During these different phases, extensive remodeling of the lung parenchyma with re-epithelialization of the alveoli and formation of fibrosis occurs. Matrix metalloproteinase-1 (MMP-1) is an enzyme that is involved in re-epithelialization processes, and dysregulation of MMP-1 activity contributes to fibrosis. Localization of MMP-1 and its inhibitors, tissue inhibitor of metalloproteinase (TIMP)-1 and TIMP-2, were investigated in lung tissue obtained from infants who died during different phases of BPD development. In all studied cases (n = 50) type-II pneumocytes were found to be immunoreactive for MMP-1, TIMP-1, and TIMP-2. During the acute and regenerative phase of BPD, type-II pneumocytes re-epithelialize the injured alveoli. This may suggest that MMP-1 and its inhibitors, expressed by type-II pneumocytes, play a role in the re-epithelialization process after acute lung injury. Although MMP-1 staining intensity remained constant in type-II pneumocytes during BPD development, TIMP-1 increased during the chronic fibrotic phase. This relative elevation of TIMP-1 compared with MMP-1 is indicative for reduced collagenolytic activity by type-II pneumocytes in chronic BPD and may contribute to fibrosis. Fibrotic foci in chronic BPD contained fibroblasts immunoreactive for MMP-1 and TIMP-1 and -2. This may indicate that decreased collagen turnover by fibroblasts contributes to fibrosis in BPD development

    Wnt3a deficiency irreversibly impairs hematopoietic stem cell self-renewal and leads to defects in progenitor cell differentiation

    Get PDF
    Canonical Wnt signaling has been implicated in various aspects of hematopoiesis. Its role is controversial due to different outcomes between various inducible Wnt-signaling loss-of-function models and also compared with gain-of-function systems. We therefore studied a mouse deficient for a Wnt gene that seemed to play a nonredundant role in hematopoiesis. Mice lacking Wnt3a die prenatally around embryonic day (E) 12.5, allowing fetal hematopoiesis to be studied using in vitro assays and transplantation into irradiated recipient mice. Here we show that Wnt3a deficiency leads to a reduction in the numbers of hematopoietic stem cells (HSCs) and progenitor cells in the fetal liver (FL) and to severely reduced reconstitution capacity as measured in secondary transplantation assays. This deficiency is irreversible and cannot be restored by transplantation into Wnt3a competent mice. The impaired long-term repopulation capacity of Wnt3a-/- HSCs could not be explained by altered cell cycle or survival of primitive progenitors. Moreover, Wnt3a deficiency affected myeloid but not B-lymphoid development at the progenitor level, and affected immature thymocyte differentiation. Our results show that Wnt3a signaling not only provides proliferative stimuli, such as for immature thymocytes, but also regulates cell fate decisions of HSC during hematopoiesis

    Data_Sheet_2_Quantitative proteomics of small numbers of closely-related cells: Selection of the optimal method for a clinical setting.zip

    Get PDF
    Supplementary Table S10. Comparative analysis of -omics platforms Supplementary Table S10. Comparative analysis of -omics platforms Supplementary Table S7.xlsx Supplementary Table S8.xlsx Supplementary Table S9.xlsxMass spectrometry (MS)-based proteomics profiling has undoubtedly increased the knowledge about cellular processes and functions. However, its applicability for paucicellular sample analyses is currently limited. Although new approaches have been developed for single-cell studies, most of them have not (yet) been standardized and/or require highly specific (often home-built) devices, thereby limiting their broad implementation, particularly in non-specialized settings. To select an optimal MS-oriented proteomics approach applicable in translational research and clinical settings, we assessed 10 different sample preparation procedures in paucicellular samples of closely-related cell types. Particularly, five cell lysis protocols using different chemistries and mechanical forces were combined with two sample clean-up techniques (C18 filter- and SP3-based), followed by tandem mass tag (TMT)-based protein quantification. The evaluation was structured in three phases: first, cell lines from hematopoietic (THP-1) and non-hematopoietic (HT-29) origins were used to test the approaches showing the combination of a urea-based lysis buffer with the SP3 bead-based clean-up system as the best performer. Parameters such as reproducibility, accessibility, spatial distribution, ease of use, processing time and cost were considered. In the second phase, the performance of the method was tested on maturation-related cell populations: three different monocyte subsets from peripheral blood and, for the first time, macrophages/microglia (MAC) from glioblastoma samples, together with T cells from both tissues. The analysis of 50,000 cells down to only 2,500 cells revealed different protein expression profiles associated with the distinct cell populations. Accordingly, a closer relationship was observed between non-classical monocytes and MAC, with the latter showing the co-expression of M1 and M2 macrophage markers, although pro-tumoral and anti-inflammatory proteins were more represented. In the third phase, the results were validated by high-end spectral flow cytometry on paired monocyte/MAC samples to further determine the sensitivity of the MS approach selected. Finally, the feasibility of the method was proven in 194 additional samples corresponding to 38 different cell types, including cells from different tissue origins, cellular lineages, maturation stages and stimuli. In summary, we selected a reproducible, easy-to-implement sample preparation method for MS-based proteomic characterization of paucicellular samples, also applicable in the setting of functionally closely-related cell populations.Peer reviewe

    DataSheet_1_Development of a standardized and validated flow cytometry approach for monitoring of innate myeloid immune cells in human blood.zip

    Get PDF
    Innate myeloid cell (IMC) populations form an essential part of innate immunity. Flow cytometric (FCM) monitoring of IMCs in peripheral blood (PB) has great clinical potential for disease monitoring due to their role in maintenance of tissue homeostasis and ability to sense micro-environmental changes, such as inflammatory processes and tissue damage. However, the lack of standardized and validated approaches has hampered broad clinical implementation. For accurate identification and separation of IMC populations, 62 antibodies against 44 different proteins were evaluated. In multiple rounds of EuroFlow-based design-testing-evaluation-redesign, finally 16 antibodies were selected for their non-redundancy and separation power. Accordingly, two antibody combinations were designed for fast, sensitive, and reproducible FCM monitoring of IMC populations in PB in clinical settings (11-color; 13 antibodies) and translational research (14-color; 16 antibodies). Performance of pre-analytical and analytical variables among different instruments, together with optimized post-analytical data analysis and reference values were assessed. Overall, 265 blood samples were used for design and validation of the antibody combinations and in vitro functional assays, as well as for assessing the impact of sample preparation procedures and conditions. The two (11- and 14-color) antibody combinations allowed for robust and sensitive detection of 19 and 23 IMC populations, respectively. Highly reproducible identification and enumeration of IMC populations was achieved, independently of anticoagulant, type of FCM instrument and center, particularly when database/software-guided automated (vs. manual “expert-based”) gating was used. Whereas no significant changes were observed in identification of IMC populations for up to 24h delayed sample processing, a significant impact was observed in their absolute counts after >12h delay. Therefore, accurate identification and quantitation of IMC populations requires sample processing on the same day. Significantly different counts were observed in PB for multiple IMC populations according to age and sex. Consequently, PB samples from 116 healthy donors (8-69 years) were used for collecting age and sex related reference values for all IMC populations. In summary, the two antibody combinations and FCM approach allow for rapid, standardized, automated and reproducible identification of 19 and 23 IMC populations in PB, suited for monitoring of innate immune responses in clinical and translational research settings.Peer reviewe

    Early increased levels of matrix metalloproteinase-9 in neonates recovering from respiratory distress syndrome

    No full text
    Aim: Matrix metalloproteinases (MMPs) play an eminent role in airway injury and remodelling. We explored the hypothesis that pulmonary MMP levels would differ early after birth (2-4 days) between infants with resolving respiratory distress syndrome (RDS) and infants developing chronic lung disease of prematurity (CLD). Methods: Thirty-two prematurely born infants (gestational age <= 30 weeks) diagnosed with RDS were included. In 13 infants RDS resolved while 19 developed CLD. MMP-2 and MMP-9 in bronchoalveolar lavage (BAL) fluids collected on postnatal days 2, 4, 7 and 10 were analyzed by zymography and densitometry. Immunochemistry was performed on BAL cells and lung tissue to identify cellular sources of MMP-9 in RDS and CLD. Results: Median MMP-9 levels increased significantly on day 2 in BAL fluid from patients with resolving RDS (median values MMP-9 = 42.0 arbitrary units (AU)) compared to CLD patients (MMP-9 = 5.4 AU). MMP-9 and neutrophil lipocalin-associated MMP-9 (NGAL) were significantly higher on day 4 in BAL fluid from resolving RDS (MMP-9 = 65.8 AU; NGAL = 16.1 AU) compared to CLD (MMP-9 = 25.4 AU; NGAL = 2.0 AU), Levels of MMP-9 and NGAL increased subsequently on days 7 and 10 in CLD. No differences in MMP-2 levels were detected between RDS and CLD. Neutrophils, macrophages and alveolar type-II epithelial cells were identified as potential sources of MMP-9. Conclusion: Our findings indicate differences in early MMP-9 BAL fluid levels between resolving RDS and developing CLD, which may relate to the ability to raise an early and adequate response to the initial injury. Copyright (C) 2006 S. Karger AG, Base

    IL3 Has a Detrimental Effect on Hematopoietic Stem Cell Self-Renewal in Transplantation Settings

    No full text
    The ex vivo expansion and maintenance of long-term hematopoietic stem cells (LT-HSC) is crucial for stem cell-based gene therapy. A combination of stem cell factor (SCF), thrombopoietin (TPO), FLT3 ligand (FLT3) and interleukin 3 (IL3) cytokines has been commonly used in clinical settings for the expansion of CD34+ from different sources, prior to transplantation. To assess the effect of IL3 on repopulating capacity of cultured CD34+ cells, we employed the commonly used combination of STF, TPO and FILT3 with or without IL3. Expanded cells were transplanted into NSG mice, followed by secondary transplantation. Overall, this study shows that IL3 leads to lower human cell engraftment and repopulating capacity in NSG mice, suggesting a negative effect of IL3 on HSC self-renewal. We, therefore, recommend omitting IL3 from HSC-based gene therapy protocols

    Effects of Delta1 and Jagged1 on early human hematopoiesis: correlation with expression of notch signaling-related genes in CD34+ cells

    No full text
    © AlphaMed PressIt has been shown that Notch signaling mediated by ligands of both Jagged and Delta families expands the hematopoietic stem cell compartment while blocking or delaying terminal myeloid differentiation. Here we show that Delta1- and Jagged1-expressing stromal cells have distinct effects on the clonogenic and differentiation capacities of human CD34(+) CD38(+) cells. Jagged1 increases the number of bipotent colony-forming unit-granulocyte macrophage (CFU-GM) and unipotent progenitors (CFU-granulocytes and CFU-macrophages), without quantitatively affecting terminal cell differentiation, whereas Delta1 reduces the number of CFU-GM and differentiated monocytic cells. Expression analysis of genes coding for Notch receptors, Notch targets, and Notch signaling modulators in supernatant CD34(+) cells arising upon contact with Jagged1 and Delta1 shows dynamic and differential gene expression profiles over time. At early time points, modest upregulation of Notch1, Notch3, and Hes1 was observed in Jagged1-CD34(+) cells, whereas those in contact with Delta1 strikingly upregulated Notch3 and Hes1. Later, myeloid progenitors with strong clonogenic potential emerging upon contact with Jagged1 upregulated Notch1 and Deltex and downregulated Notch signaling modulators, whereas T/NK progenitors originated by Delta1 strikingly upregulated Notch3 and Deltex and, to a lesser extent, Hes1, Lunatic Fringe, and Numb. Together, the data unravel previously unrecognized expression patterns of Notch signaling-related genes in CD34(+) CD38(+) cells as they develop in Jagged1- or Delta1-stromal cell environments, which appear to reflect sequential maturational stages of CD34(+) cells into distinct cell lineages.This work was supported by grants from Fundação para a Ciência e Tecnologia (POCTI/37953/2001) and Fundo de Investigação Oncológica.info:eu-repo/semantics/publishedVersio

    Axin2/Conductin Is Required for Normal Haematopoiesis and T Lymphopoiesis

    No full text
    The development of T lymphocytes in the thymus and their stem cell precursors in the bone marrow is controlled by Wnt signaling in strictly regulated, cell-type specific dosages. In this study, we investigated levels of canonical Wnt signaling during hematopoiesis and T cell development within the Axin2-mTurquoise2 reporter. We demonstrate active Wnt signaling in hematopoietic stem cells (HSCs) and early thymocytes, but also in more mature thymic subsets and peripheral T lymphocytes. Thymic epithelial cells displayed particularly high Wnt signaling, suggesting an interesting crosstalk between thymocytes and thymic epithelial cells (TECs). Additionally, reporter mice allowed us to investigate the loss of Axin2 function, demonstrating decreased HSC repopulation upon transplantation and the partial arrest of early thymocyte development in Axin2Tg/Tg full mutant mice. Mechanistically, loss of Axin2 leads to supraphysiological Wnt levels that disrupt HSC differentiation and thymocyte development

    Carriers of the p.P522R variant in PLCγ2 have a slightly more responsive immune system

    Get PDF
    BACKGROUND: The rs72824905 single-nucleotide polymorphism in the PLCG2 gene, encoding the p.P522R residue change in Phospholipase C gamma 2 (PLCγ2), associates with protection against several dementia subtypes and with increased likelihood of longevity. Cell lines and animal models indicated that p.P522R is a functional hypermorph. We aimed to confirm this in human circulating peripheral immune cells. METHODS: We compared effects of p.P522R on immune system function between carriers and non-carriers (aged 59-103y), using in-depth immunophenotyping, functional B-cell and myeloid cell assays, and in vivo SARS-CoV-2 vaccination. RESULTS: In line with expectations, p.P522R impacts immune cell function only slightly, but it does so across a wide array of immune cell types. Upon B-cell stimulation, we observed increased PLCγ2 phosphorylation and calcium release, suggesting increased B-cell sensitivity upon antigen recognition. Further, p.P522R-carriers had higher numbers of CD20++CD21-CD24+ naive B cells and IgG1+ memory B cells. In myeloid cells, normalized ROS production was higher upon PLCγ2-dependent stimulation. On classical monocytes, CD33 levels were elevated. Furthermore, carriers expressed lower levels of allergy-related FcεRI on several immune cell subsets. Nevertheless, carriers and non-carriers had similar serological responses to SARS-CoV-2 vaccination. CONCLUSION: The immune system from p.P522R-carriers is slightly more responsive to stimulation than in non-carriers
    corecore