115 research outputs found
Characteristics and propagation of airgun pulses in shallow water with implications for effects on small marine mammals
Airguns used in seismic surveys are among the most prevalent and powerful anthropogenic noise sources in marine habitats. They are designed to produce most energy below 100 Hz, but the pulses have also been reported to contain medium-to-high frequency components with the potential to affect small marine mammals, which have their best hearing sensitivity at higher frequencies. In shallow water environments, inhabited by many of such species, the impact of airgun noise may be particularly challenging to assess due to complex propagation conditions. To alleviate the current lack of knowledge on the characteristics and propagation of airgun pulses in shallow water with implications for effects on small marine mammals, we recorded pulses from a single airgun with three operating volumes (10 in3, 25 in3 and 40 in3) at six ranges (6, 120, 200, 400, 800 and 1300 m) in a uniform shallow water habitat using two calibrated Reson 4014 hydrophones and four DSG-Ocean acoustic data recorders. We show that airgun pulses in this shallow habitat propagated out to 1300 meters in a way that can be approximated by a 18log(r) geometric transmission loss model, but with a high pass filter effect from the shallow water depth. Source levels were back-calculated to 192 dB re µPa2s (sound exposure level) and 200 dB re 1 µPa dB Leq-fast (rms over 125 ms duration), and the pulses contained substantial energy up to 10 kHz, even at the furthest recording station at 1300 meters. We conclude that the risk of causing hearing damage when using single airguns in shallow waters is small for both pinnipeds and porpoises. However, there is substantial potential for significant behavioral responses out to several km from the airgun, well beyond the commonly used shut-down zone of 500 meters
Recommended from our members
The effects of landscape modifications on the long-term persistence of animal populations
Background: The effects of landscape modifications on the long-term persistence of wild animal populations is of crucial
importance to wildlife managers and conservation biologists, but obtaining experimental evidence using real landscapes is
usually impossible. To circumvent this problem we used individual-based models (IBMs) of interacting animals in
experimental modifications of a real Danish landscape. The models incorporate as much as possible of the behaviour and
ecology of four species with contrasting life-history characteristics: skylark (Alauda arvensis), vole (Microtus agrestis), a
ground beetle (Bembidion lampros) and a linyphiid spider (Erigone atra). This allows us to quantify the population
implications of experimental modifications of landscape configuration and composition.
Methodology/Principal Findings: Starting with a real agricultural landscape, we progressively reduced landscape
complexity by (i) homogenizing habitat patch shapes, (ii) randomizing the locations of the patches, and (iii) randomizing the
size of the patches. The first two steps increased landscape fragmentation. We assessed the effects of these manipulations
on the long-term persistence of animal populations by measuring equilibrium population sizes and time to recovery after
disturbance. Patch rearrangement and the presence of corridors had a large effect on the population dynamics of species
whose local success depends on the surrounding terrain. Landscape modifications that reduced population sizes increased
recovery times in the short-dispersing species, making small populations vulnerable to increasing disturbance. The species
that were most strongly affected by large disturbances fluctuated little in population sizes in years when no perturbations
took place.
Significance: Traditional approaches to the management and conservation of populations use either classical methods of
population analysis, which fail to adequately account for the spatial configurations of landscapes, or landscape ecology,
which accounts for landscape structure but has difficulty predicting the dynamics of populations living in them. Here we
show how realistic and replicable individual-based models can bridge the gap between non-spatial population theory and
non-dynamic landscape ecology. A major strength of the approach is its ability to identify population vulnerabilities not
detected by standard population viability analyses
AgentSeal : agent-based model describing movement of marine central-place foragers
Acknowledgement This project has received funding from the European Union's Horizon 2020 research and innovation programme under the Marie Skłodowska-Curie grant agreement No 746602. GA and SB have been partly funded by Gemini Wind park and the NWO (project ALWPP.2017.003). We would like to thank J. Grecian, D. Thomson, M. Fedak, M. Carter, D. Russell, A. Hall, J. Ransijn, H. Vance and M. Civil for help in model design.Peer reviewedPublisher PD
The ODD protocol for describing agent-based and other simulation models: A second update to improve clarity, replication, and structural realism
© 2020, University of Surrey. All rights reserved. The Overview, Design concepts and Details (ODD) protocol for describing Individual-and Agent-Based Models (ABMs) is now widely accepted and used to document such models in journal articles. As a standardized document for providing a consistent, logical and readable account of the structure and dynamics of ABMs, some research groups also find it useful as a workflow for model design. Even so, there are still limitations to ODD that obstruct its more widespread adoption. Such limitations are discussed and addressed in this paper: the limited availability of guidance on how to use ODD; the length of ODD documents; limitations of ODD for highly complex models; lack of sufficient details of many ODDs to enable reimplementation without access to the model code; and the lack of provision for sections in the document structure covering model design ratio-nale, the model’s underlying narrative, and the means by which the model’s fitness for purpose is evaluated. We document the steps we have taken to provide better guidance on: structuring complex ODDs and an ODD summary for inclusion in a journal article (with full details in supplementary material; Table 1); using ODD to point readers to relevant sections of the model code; update the document structure to include sections on model rationale and evaluation. We also further advocate the need for standard descriptions of simulation experiments and argue that ODD can in principle be used for any type of simulation model. Thereby ODD would provide a lingua franca for simulation modelling
Element concentrations, histology and serum biochemistry of arctic char (Salvelinus alpinus) and shorthorn sculpins (Myoxocephalus scorpius) in northwest Greenland
The increasing exploratory efforts in the Greenland mineral industry, and in particular, the proposed rare earth element (REE) mining projects, requires an urgent need to generate data on baseline REE concentrations and their potential environmental impacts. Herein, we have investigated REE concentrations in anadromous Arctic char (Salvelinus alpinus) and shorthorn sculpins (Myoxocephalus scorpius) from uncontaminated sites in Northwest Greenland, along with the relationships between the element concentrations in gills and liver, and gill histology and serum biochemical parameters. Concentrations of arsenic, silver, cadmium, cerium, chromium, copper, dysprosium, mercury, lanthanum, neodymium, lead, selenium, yttrium, and zinc in gills, liver and muscle are presented. No significant statistical correlations were observed between element concentrations in different organs and gill histology or serum biochemical parameters. However, we observed positive relationships between age and histopathology, emphasizing the importance of including age as a co-variable in histological studies of fish. Despite no element-induced effects were observed, this study is considered an important baseline study, which can be used as a reference for the assessment of impacts of potential future REE mine sites in Greenland
Harbour porpoise (<i>Phocoena phocoena</i>) in the Wadden Sea World Heritage Site and requirements for trilateral monitoring
The harbour porpoise (Phocoena phocoena) is considered part of the ‘Outstanding Universal Value’ characterising the Wadden Sea World Heritage Site (WS WHS). The Trilateral Wadden Sea Plan aims to preserve the conservation status of the Trilateral Wadden Sea Cooperation Area, encompassing the WS WHS. The plan has specified two conservation targets for the harbour porpoise: (1) viable stocks and a natural reproduction capacity and (2) conservation of habitat quality for its conservation. To assess the current occurrence of the harbour porpoise in the Wadden Sea area, we collated and analysed data from regional and national research projects using telemetry, aerial surveys, strandings and passive acoustic monitoring, obtained over the years 1990–2020. The results illustrate that porpoises occur in both offshore and intertidal waters, showing seasonal movements and changes in local occurrence over time. Some porpoises displayed limited home ranges throughout the year, suggesting a possible residency for some of the animals using the Wadden Sea area. We also showed that methods, frequency and spatial coverage of monitoring activities vary among the countries Denmark, Germany and the Netherlands. We discuss the suitability of the different methods both regarding the challenges of monitoring in the complex Wadden Sea habitat as well as their ability to target the conservation aims of the WHS. We give several recommendations to assess the status of the species to meet the identified conservation aims
Recommended from our members
How predation and landscape fragmentation affect vole population dynamics
Background: Microtine species in Fennoscandia display a distinct north-south gradient from regular cycles to stable
populations. The gradient has often been attributed to changes in the interactions between microtines and their predators.
Although the spatial structure of the environment is known to influence predator-prey dynamics of a wide range of species,
it has scarcely been considered in relation to the Fennoscandian gradient. Furthermore, the length of microtine breeding
season also displays a north-south gradient. However, little consideration has been given to its role in shaping or generating
population cycles. Because these factors covary along the gradient it is difficult to distinguish their effects experimentally in
the field. The distinction is here attempted using realistic agent-based modelling.
Methodology/Principal Findings: By using a spatially explicit computer simulation model based on behavioural and
ecological data from the field vole (Microtus agrestis), we generated a number of repeated time series of vole densities
whose mean population size and amplitude were measured. Subsequently, these time series were subjected to statistical
autoregressive modelling, to investigate the effects on vole population dynamics of making predators more specialised, of
altering the breeding season, and increasing the level of habitat fragmentation. We found that fragmentation as well as the
presence of specialist predators are necessary for the occurrence of population cycles. Habitat fragmentation and predator
assembly jointly determined cycle length and amplitude. Length of vole breeding season had little impact on the
oscillations.
Significance: There is good agreement between our results and the experimental work from Fennoscandia, but our results
allow distinction of causation that is hard to unravel in field experiments. We hope our results will help understand the
reasons for cycle gradients observed in other areas. Our results clearly demonstrate the importance of landscape
fragmentation for population cycling and we recommend that the degree of fragmentation be more fully considered in
future analyses of vole dynamics
- …