2,193 research outputs found

    Carbon Nanotubes Enhance Cytotoxicity Mediated by Human Lymphocytes In Vitro

    Get PDF
    With the expansion of the potential applications of carbon nanotubes (CNT) in biomedical fields, the toxicity and biocompatibility of CNT have become issues of growing concern. Since the immune system often mediates tissue damage during pathogenesis, it is important to explore whether CNT can trigger cytotoxicity through affecting the immune functions. In the current study, we evaluated the influence of CNT on the cytotoxicity mediated by human lymphocytes in vitro. The results showed that while CNT at low concentrations (0.001 to 0.1 µg/ml) did not cause obvious cell death or apoptosis directly, it enhanced lymphocyte-mediated cytotoxicity against multiple human cell lines. In addition, CNT increased the secretion of IFN-γ and TNF-α by the lymphocytes. CNT also upregulated the NF-κB expression in lymphocytes, and the blockage of the NF-κB pathway reduced the lymphocyte-mediated cytotoxicity triggered by CNT. These results suggest that CNT at lower concentrations may prospectively initiate an indirect cytotoxicity through affecting the function of lymphocytes

    Neurocognitive Changes among Elderly Exposed to PCBs/PCDFs in Taiwan

    Get PDF
    BACKGROUND: In 1979 approximately 2,000 people were exposed to polychlorinated biphenyls (PCBs) and polychlorinated dibenzofurans (PCDFs) due to ingestion of contaminated cooking oil in Taiwan. Although a previous study has shown delayed developmental milestones and poorer neurocognitive functioning in children born to exposed mothers, it is unclear whether neurocognitive functioning was impaired in people who were directly exposed to the PCBs and PDCFs. OBJECTIVE: The objective of this study was to compare neurocognitive functioning in people exposed to PCBs and PCDFs with that of unexposed sex- and age-matched neighbors. METHODS: We conducted a retrospective cohort study among exposed and unexposed subjects >= 60 years of age using prospective outcome measurements. We evaluated neurocognitive tests including cognition, memory modalities, learning, motor and sensory function, mood, and daily activity. RESULTS: In total, 162 (59%) exposed and 151 (55%) reference subjects completed this study. In exposed men, all test results were similar to the reference group; however, exposed women had reduced functioning in attention and digit span (ADS), visual memory span (VMS), and verbal memory recalls (VMR ), especially learning ability. We also found a borderline reduction in the Mini-Mental State Examination. The digit symbol, motor, sensory, depression ( determined by the Geriatric Depression Scale-Short Form), and activity of daily life were not different between the exposed and reference groups. A significant dose-response relationship was found for VMR, ADS, and VMS. CONCLUSION: Our study showed dose-dependent neurocognitive deficits in certain aspects of attention, visual memory, and learning ability in women previously exposed to PCBs and PCDFs, but not in exposed men

    Small Polarons in Transition Metal Oxides

    Full text link
    The formation of polarons is a pervasive phenomenon in transition metal oxide compounds, with a strong impact on the physical properties and functionalities of the hosting materials. In its original formulation the polaron problem considers a single charge carrier in a polar crystal interacting with its surrounding lattice. Depending on the spatial extension of the polaron quasiparticle, originating from the coupling between the excess charge and the phonon field, one speaks of small or large polarons. This chapter discusses the modeling of small polarons in real materials, with a particular focus on the archetypal polaron material TiO2. After an introductory part, surveying the fundamental theoretical and experimental aspects of the physics of polarons, the chapter examines how to model small polarons using first principles schemes in order to predict, understand and interpret a variety of polaron properties in bulk phases and surfaces. Following the spirit of this handbook, different types of computational procedures and prescriptions are presented with specific instructions on the setup required to model polaron effects.Comment: 36 pages, 12 figure

    Biology and Life History of Balcha indica, an Ectoparasitoid Attacking the Emerald Ash Borer, Agrilus planipennis, in North America

    Get PDF
    Balcha indica Mani and Kaul (Hymenoptera: Eupelmidae) is a solitary ectoparasitoid attacking larvae, prepupae, and pupae of the emerald ash borer, Agrilus planipennis Fairmaire (Hymenoptera: Eupelmidae). Its fecundity, oviposition rate, longevity, and development time were determined in the laboratory under standard rearing conditions (25 ± 2° C, 65 ± 10% relative humidity, and 14:10 L:D). Adults lived a mean of 59 days with a maximum of 117 days. Lifetime adult fecundity averaged 36 eggs with a maximum 94 eggs per female. The egg stage lasted for a maximum of four days with ∼ 50% eggs hatched within two days. The development time of the first instars lasted for a maximum of nine days; 50% of the first instars completed their development (i.e., molted to the next instar) within five days. Instars of the intermediate and final stage larvae (after molting of the first instars occurred) could not be distinguished until they reached the pupal stage, and 50% of those larvae pupated ∼ 62 days after adult oviposition. Under the standard rearing conditions, 50% of B. indica took ∼ 83 days to complete the life cycle (from egg to adult emergence) ranging from 47 to 129 days. These results suggest that B. indica may not have more than two generations in the mid-Atlantic and Midwest regions of United States, where normal growing seasons—with average temperature above 25° C—are normally less than six months (May–October). Because of the long life span and oviposition period of adults, however, B. indica is likely to have overlapping generations

    Learning to Selectively Transfer: Reinforced Transfer Learning for Deep Text Matching

    Full text link
    Deep text matching approaches have been widely studied for many applications including question answering and information retrieval systems. To deal with a domain that has insufficient labeled data, these approaches can be used in a Transfer Learning (TL) setting to leverage labeled data from a resource-rich source domain. To achieve better performance, source domain data selection is essential in this process to prevent the "negative transfer" problem. However, the emerging deep transfer models do not fit well with most existing data selection methods, because the data selection policy and the transfer learning model are not jointly trained, leading to sub-optimal training efficiency. In this paper, we propose a novel reinforced data selector to select high-quality source domain data to help the TL model. Specifically, the data selector "acts" on the source domain data to find a subset for optimization of the TL model, and the performance of the TL model can provide "rewards" in turn to update the selector. We build the reinforced data selector based on the actor-critic framework and integrate it to a DNN based transfer learning model, resulting in a Reinforced Transfer Learning (RTL) method. We perform a thorough experimental evaluation on two major tasks for text matching, namely, paraphrase identification and natural language inference. Experimental results show the proposed RTL can significantly improve the performance of the TL model. We further investigate different settings of states, rewards, and policy optimization methods to examine the robustness of our method. Last, we conduct a case study on the selected data and find our method is able to select source domain data whose Wasserstein distance is close to the target domain data. This is reasonable and intuitive as such source domain data can provide more transferability power to the model.Comment: Accepted to WSDM 201

    MicroRNAs in pulmonary arterial remodeling

    Get PDF
    Pulmonary arterial remodeling is a presently irreversible pathologic hallmark of pulmonary arterial hypertension (PAH). This complex disease involves pathogenic dysregulation of all cell types within the small pulmonary arteries contributing to vascular remodeling leading to intimal lesions, resulting in elevated pulmonary vascular resistance and right heart dysfunction. Mutations within the bone morphogenetic protein receptor 2 gene, leading to dysregulated proliferation of pulmonary artery smooth muscle cells, have been identified as being responsible for heritable PAH. Indeed, the disease is characterized by excessive cellular proliferation and resistance to apoptosis of smooth muscle and endothelial cells. Significant gene dysregulation at the transcriptional and signaling level has been identified. MicroRNAs are small non-coding RNA molecules that negatively regulate gene expression and have the ability to target numerous genes, therefore potentially controlling a host of gene regulatory and signaling pathways. The major role of miRNAs in pulmonary arterial remodeling is still relatively unknown although research data is emerging apace. Modulation of miRNAs represents a possible therapeutic target for altering the remodeling phenotype in the pulmonary vasculature. This review will focus on the role of miRNAs in regulating smooth muscle and endothelial cell phenotypes and their influence on pulmonary remodeling in the setting of PAH

    Comparative Analysis of Acid Sphingomyelinase Distribution in the CNS of Rats and Mice Following Intracerebroventricular Delivery

    Get PDF
    Niemann-Pick A (NPA) disease is a lysosomal storage disorder (LSD) caused by a deficiency in acid sphingomyelinase (ASM) activity. Previously, we reported that biochemical and functional abnormalities observed in ASM knockout (ASMKO) mice could be partially alleviated by intracerebroventricular (ICV) infusion of hASM. We now show that this route of delivery also results in widespread enzyme distribution throughout the rat brain and spinal cord. However, enzyme diffusion into CNS parenchyma did not occur in a linear dose-dependent fashion. Moreover, although the levels of hASM detected in the rat CNS were determined to be within the range shown to be therapeutic in ASMKO mice, the absolute amounts represented less than 1% of the total dose administered. Finally, our results also showed that similar levels of enzyme distribution are achieved across rodent species when the dose is normalized to CNS weight as opposed to whole body weight. Collectively, these data suggest that the efficacy observed following ICV delivery of hASM in ASMKO mice could be scaled to CNS of the rat

    Ultracold atomic gases in optical lattices: mimicking condensed matter physics and beyond

    Get PDF
    We review recent developments in the physics of ultracold atomic and molecular gases in optical lattices. Such systems are nearly perfect realisations of various kinds of Hubbard models, and as such may very well serve to mimic condensed matter phenomena. We show how these systems may be employed as quantum simulators to answer some challenging open questions of condensed matter, and even high energy physics. After a short presentation of the models and the methods of treatment of such systems, we discuss in detail, which challenges of condensed matter physics can be addressed with (i) disordered ultracold lattice gases, (ii) frustrated ultracold gases, (iii) spinor lattice gases, (iv) lattice gases in "artificial" magnetic fields, and, last but not least, (v) quantum information processing in lattice gases. For completeness, also some recent progress related to the above topics with trapped cold gases will be discussed.Comment: Review article. v2: published version, 135 pages, 34 figure
    corecore