215 research outputs found

    Cancer and neurodegeneration: between the devil and the deep blue sea

    Get PDF
    Cancer and neurodegeneration are often thought of as disease mechanisms at opposite ends of a spectrum; one due to enhanced resistance to cell death and the other due to premature cell death. There is now accumulating evidence to link these two disparate processes. An increasing number of genetic studies add weight to epidemiological evidence suggesting that sufferers of a neurodegenerative disorder have a reduced incidence for most cancers, but an increased risk for other cancers. Many of the genes associated with either cancer and/or neurodegeneration play a central role in cell cycle control, DNA repair, and kinase signalling. However, the links between these two families of diseases remain to be proven. In this review, we discuss recent and sometimes as yet incomplete genetic discoveries that highlight the overlap of molecular pathways implicated in cancer and neurodegeneration

    Study of the genetic variability in a Parkinson's Disease gene: EIF4G1

    Get PDF
    Chartier-Harlin and colleagues [2] recently reported mutations in the eukaryotic translation initiation factor 4-gamma (EIF4G1) gene in families with parkinsonism. Large-scale screening found two mutations (p.R1205H and p.A502V) only in affected individuals, although their relative frequency was very low. The aim of this study was to investigate EIF4G1 parkinsonism-related variants in two separate cohorts and study coding variability across the gene. We first screened a series of familial Parkinson's Disease (PD) patients in an attempt to confirm previous results by showing segregation. Then, to determine the extent of coding variation in the gene, we first screened a cohort of sub-Saharan African individuals from the Centre d'Etude du Polymorphisme Humain - Human Genome Diversity Cell Line Panel (HGDP) [1] and then analyzed data from 5350 individuals National Heart, Lung, and Blood Institute (NHLBI) exome sequencing project. We failed to identify any PD-related mutations in the familial samples. Conversely we found the p.A502V variant in the NHLBI population. We observed a high number of coding polymorphism in the exons where the two PD variants have been previously reported. We conclude that either EIF4G1 variants are an extremely rare cause of familial PD in Caucasian cohorts, or that A502V is in fact a rare benign variant not involved in PD aetiology. Our data also suggests that the protein can tolerate some extent of variability particularly at this point of the gene

    Features of GBA-associated Parkinson’s disease at presentation in the UK Tracking Parkinson’s study

    Get PDF
    Objectives: To examine the influence of the glucocerebrosidase (GBA) mutation carrier state on age at onset of Parkinson’s disease (PD), the motor phenotype and cognitive function at baseline assessment in a large cohort of UK patients. We also analysed the prevalence of mood and behavioural problems that may confound the assessment of cognitive function. Methods: We prospectively recruited patients with PD in the Tracking Parkinson’s study. We fully sequenced the GBA gene in all recently diagnosed patients (≤3.5 years). We examined cognitive (Montreal Cognitive Assessment) and motor (Movement Disorder Society Unified Parkinson’s Disease Rating Scale part 3) function at a baseline assessment, at an average of 1.3 years after diagnosis. We used logistic regression to determine predictors of PD with mild cognitive impairment and PD with dementia. Results: We studied 1893 patients with PD: 48 (2.5%) were heterozygous carriers for known Gaucher’s disease (GD) causing pathogenic mutations; 117 (6.2%) had non-synonymous variants, previously associated with PD, and 28 (1.5%) patients carried variants of unknown significance in the GBA gene. L444P was the most common pathogenic GBA mutation. Patients with pathogenic GBA mutations were on average 5 years younger at disease onset compared with non-carriers (P=0.02). PD patients with GD-causing mutations did not have an increased family risk of PD. Patients with GBA mutations were more likely to present with the postural instability gait difficulty phenotype compared with non-carriers (P=0.02). Patients carrying pathogenic mutations in GBA had more advanced Hoehn and Yahr stage after adjustment for age and disease duration compared with non-carriers (P=0.005). There were no differences in cognitive function between GBA mutation carriers and non-carriers at this early disease stage. Conclusions: Our study confirms the influence of GBA mutations on the age of onset, disease severity and motor phenotype in patients with PD. Cognition did not differ between GBA mutation carriers and non-carriers at baseline, implying that cognitive impairment/dementia, reported in other studies at a later disease stage, is not present in recently diagnosed cases. This offers an important window of opportunity for potential disease-modifying therapy that may protect against the development of dementia in GBA-PD. Clinical trial registration: NCT02881099; Results

    Stratification of candidate genes for Parkinson's disease using weighted protein-protein interaction network analysis

    Get PDF
    Background: Genome wide association studies (GWAS) have helped identify large numbers of genetic loci that significantly associate with increased risk of developing diseases. However, translating genetic knowledge into understanding of the molecular mechanisms underpinning disease (i.e. disease-specific impacted biological processes) has to date proved to be a major challenge. This is primarily due to difficulties in confidently defining candidate genes at GWAS-risk loci. The goal of this study was to better characterize candidate genes within GWAS loci using a protein interactome based approach and with Parkinson’s disease (PD) data as a test case. // Results: We applied a recently developed Weighted Protein-Protein Interaction Network Analysis (WPPINA) pipeline as a means to define impacted biological processes, risk pathways and therein key functional players. We used previously established Mendelian forms of PD to identify seed proteins, and to construct a protein network for genetic Parkinson’s and carried out functional enrichment analyses. We isolated PD-specific processes indicating ‘mitochondria stressors mediated cell death’, ‘immune response and signaling’, and ‘waste disposal’ mediated through ‘autophagy’. Merging the resulting protein network with data from Parkinson’s GWAS we confirmed 10 candidate genes previously selected by pure proximity and were able to nominate 17 novel candidate genes for sporadic PD. // Conclusions: With this study, we were able to better characterize the underlying genetic and functional architecture of idiopathic PD, thus validating WPPINA as a robust pipeline for the in silico genetic and functional dissection of complex disorders

    Mutations in the autoregulatory domain of β-tubulin 4a cause hereditary dystonia.

    Get PDF
    Dystonia type 4 (DYT4) was first described in a large family from Heacham in Norfolk with an autosomal dominantly inherited whispering dysphonia, generalized dystonia, and a characteristic hobby horse ataxic gait. We carried out a genetic linkage analysis in the extended DYT4 family that spanned 7 generations from England and Australia, revealing a single LOD score peak of 6.33 on chromosome 19p13.12-13. Exome sequencing in 2 cousins identified a single cosegregating mutation (p.R2G) in the β-tubulin 4a (TUBB4a) gene that was absent in a large number of controls. The mutation is highly conserved in the β-tubulin autoregulatory MREI (methionine-arginine-glutamic acid-isoleucine) domain, highly expressed in the central nervous system, and extensive in vitro work has previously demonstrated that substitutions at residue 2, specifically R2G, disrupt the autoregulatory capability of the wild-type β-tubulin peptide, affirming the role of the cytoskeleton in dystonia pathogenesis

    Establishing the role of rare coding variants in known Parkinson's disease risk loci

    Get PDF
    Many common genetic factors have been identified to contribute to Parkinson's disease (PD) susceptibility, improving our understanding of the related underlying biological mechanisms. The involvement of rarer variants in these loci has been poorly studied. Using International Parkinson's Disease Genomics Consortium data sets, we performed a comprehensive study to determine the impact of rare variants in 23 previously published genome-wide association studies (GWAS) loci in PD. We applied Prix fixe to select the putative causal genes underneath the GWAS peaks, which was based on underlying functional similarities. The Sequence Kernel Association Test was used to analyze the joint effect of rare, common, or both types of variants on PD susceptibility. All genes were tested simultaneously as a gene set and each gene individually. We observed a moderate association of common variants, confirming the involvement of the known PD risk loci within our genetic data sets. Focusing on rare variants, we identified additional association signals for LRRK2, STBD1, and SPATA19. Our study suggests an involvement of rare variants within several putatively causal genes underneath previously identified PD GWAS peaks

    Spastic paraplegia preceding PSEN1-related familial Alzheimer's disease.

    Get PDF
    Introduction: We investigated the frequency, neuropathology, and phenotypic characteristics of spastic paraplegia (SP) that precedes dementia in presenilin 1 (PSEN1) related familial Alzheimer's disease (AD). Methods: We performed whole exome sequencing (WES) in 60 probands with hereditary spastic paraplegia (HSP) phenotype that was negative for variants in known HSP-related genes. Where PSEN1 mutation was identified, brain biopsy was performed. We investigated the link between HSP and AD with PSEN1 in silico pathway analysis and measured in vivo the stability of PSEN1 mutant γ-secretase. Results: We identified a PSEN1 variant (p.Thr291Pro) in an individual presenting with pure SP at 30 years of age. Three years later, SP was associated with severe, fast cognitive decline and amyloid deposition with diffuse cortical plaques on brain biopsy. Biochemical analysis of p.Thr291Pro PSEN1 revealed that although the mutation does not alter active γ-secretase reconstitution, it destabilizes γ-secretase-amyloid precursor protein (APP)/amyloid beta (Aβn) interactions during proteolysis, enhancing the production of longer Aβ peptides. We then extended our analysis to all 226 PSEN1 pathogenic variants reported and show that 7.5% were associated with pure SP onset followed by cognitive decline later in the disease. We found that PSEN1 cases manifesting initially as SP have a later age of onset, are associated with mutations located beyond codon 200, and showed larger diffuse, cored plaques, amyloid-ring arteries, and severe CAA. Discussion: We show that pure SP can precede dementia onset in PSEN1-related familial AD. We recommend PSEN1 genetic testing in patients presenting with SP with no variants in known HSP-related genes, particularly when associated with a family history of cognitive decline

    The Parkinson's Disease Mendelian Randomization Research Portal

    Get PDF
    Background Mendelian randomization is a method for exploring observational associations to find evidence of causality. Objective To apply Mendelian randomization between risk factors/phenotypic traits (exposures) and PD in a large, unbiased manner, and to create a public resource for research. Methods We used two‐sample Mendelian randomization in which the summary statistics relating to single‐nucleotide polymorphisms from 5,839 genome‐wide association studies of exposures were used to assess causal relationships with PD. We selected the highest‐quality exposure genome‐wide association studies for this report (n = 401). For the disease outcome, summary statistics from the largest published PD genome‐wide association studies were used. For each exposure, the causal effect on PD was assessed using the inverse variance weighted method, followed by a range of sensitivity analyses. We used a false discovery rate of 5% from the inverse variance weighted analysis to prioritize exposures of interest. Results We observed evidence for causal associations between 12 exposures and risk of PD. Of these, nine were effects related to increasing adiposity and decreasing risk of PD. The remaining top three exposures that affected PD risk were tea drinking, time spent watching television, and forced vital capacity, but these may have been biased and were less convincing. Other exposures at nominal statistical significance included inverse effects of smoking and alcohol. Conclusions We present a new platform which offers Mendelian randomization analyses for a total of 5,839 genome‐wide association studies versus the largest PD genome‐wide association studies available (https://pdgenetics.shinyapps.io/MRportal/). Alongside, we report further evidence to support a causal role for adiposity on lowering the risk of P
    corecore