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Supplementary Methods 

Design 

We sought to consider the broad parkinsonian syndrome, which is manifested in classical PD, the 

focus of the current study, as well as in a subset of cases diagnosed with frontotemporal dementia 

(FTD) – FTD with parkinsonism (or FTDP-17) [1] – and in a plethora of conditions such as 

spinocerebellar ataxia (SCA), neurodegeneration with brain iron accumulation (NBIA), spastic 

paraplegia (SP) and dystonia presenting with parkinsonism (DS). The latter syndromes may be 

classified under the umbrella term ‘parkinsonian spectrum’ (hereafter referred to as PS) [2-8]. FTD 

and PS were specifically selected as ‘control traits’ for PD to evaluate the power of our approach in 

discriminating functional processes at the basis of similar, yet different syndromes. In fact, FTD 

and PS not only share a number of clinical and pathological features with PD, but also are 

characterized by familial type of inheritance (i.e. there are syndrome-specific Mendelian genes to 

be used as seeds for building networks). We thus used all genes known to be associated with 

these conditions as seeds (Table 1) to build syndrome-specific networks. 

Definitions 

A seed is the input protein used to query and download protein-protein interactions; the 

interactome is the seed + its direct interactors; the first layer network is composed by the seeds 

and their direct interactors; the second layer network is made of all interactors of the first layer 

interactors; the syndrome-specific network is composed by seed + first + second layer 

interactomes. 

Download of the PPIs  

As detailed in [9], PPIs of Mendelian-PD gene products were downloaded for each seed protein as 

MITAB 2.5 files (January-2016) from the IntAct, BioGRID, InnateDB, InnateDB-all, InnateDB-IMEx 

and MINT databases by means of the PSICQUIC platform 

(http://www.ebi.ac.uk/Tools/webservices/psicquic/view/main.xhtml) developed by the IMEx 

consortium. Raw PPI data were processed as previously described. Briefly, protein IDs were 

converted to Swiss-Prot and Entrez gene ID; TrEMBL, non-protein interactors (e.g. chemicals), 
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obsolete Entrez and Entrez matching to multiple Swiss-Prot identifiers were removed. Raw PPI 

annotations from different databases were finally merged into a single file for each seed. 

Construction of the PPI network 

The detailed pipeline is described in [9]. Briefly, all PPIs underwent quality control (QC) and 

filtering. Particularly: i) all non-human taxid annotations were removed; ii) all annotations with poor 

quality control were removed (i.e. multiple or absent PubMed identifiers, no description of 

Interaction Detection Method); iii) all proteins whose entire transcript was not reported in brain 

(http://www.braineac.org/) were removed. After interaction detection method reassignment (to pool 

together similar methodologies) the interactions were then scored taking into consideration the 

following parameters: i) the number of different publications reporting the interaction (publication 

score, PS); ii) the number of different methods reporting the interaction (method score, MS); iii) the 

CrapOme (Contaminant Repository for Affinity Purification) score (CS) (for the first layer only). 

After computation of the final score (PS+MS+CS), all the interactors with a final score ≤ 2 were 

discarded because the interaction did not meet our criteria (i – iii, see above). Of note, 

polyubiquitin-C (UBC), polyubiquitin-B (UBB) and ubiquitin D (UBD) were discarded from the 

network as they may indicate unspecific binding of ubiquitin to proteins tagged for degradation.  

Topological analysis 

We calculated the inter-interactome degree (IID) for each single node in the network by calculating 

the number of different interactomes that node belonged to. For each single node, the interactome 

connection degree (ICD) equates to the IID divided by the number of interactomes (input seeds) in 

the network and ranges between IDC = 1 (nodes able to bridge all the interactomes in the network) 

and IDC = 1/number of seeds (nodes unable to bridge any interactomes in the network). Nodes 

with IDC ≥ 0.6 are inter-interactomes hubs (IIHs). 

Functional Enrichment Analysis and Replication 

We performed Gene Ontology (GO) terms enrichment analyses in g:Profiler (g:GOSt, 

http://biit.cs.ut.ee/gprofiler/) [10] during October-November 2016 using Ensembl v85/Ensembl 

Genomes v32/33. g:Profiler settings were as follows: enrichment for GO terms biological 
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processes (BP) only; Fisher's one-tailed test as statistical method for enrichment, SCS-threshold 

as multiple testing correction; statistical domain size was only annotated genes; no hierarchical 

filtering was included. The following proteins were excluded from analysis because not identified by 

g:Profiler: ECM29, LINC00312 and LPHN1. Enriched GO-BP terms were grouped into custom-

made “semantic classes” (Supplementary File 1). Generic terms (within semantic classes such as 

Enzyme, General, Metabolism, Motility, Muscle, Physiology, Protein Modification and Virus) were 

discarded because unspecific. To replicate the enrichment analysis results obtained from 

g:Profiler, we used PANTHER, an alternative online tool (accessed on the 20th  June 2017 and that 

uses the overrepresentation test as statistical method for enrichment and Bonferroni as multiple 

testing correction [11], version 11.1 released on 20th December 2016). 

Similar semantic classes were grouped into hierarchical groups called ‘functional blocks’ 

(Supplementary file 1). 

Gene Prioritization – GWAS 

We selected thirty-two relevant PD-SNPs (rs35749011, rs823118, rs10797576, rs6430538, 

rs1474055, rs115185635, rs12637471, rs34311866, rs11724635, rs6812193, rs356182, 

rs9275326, rs199347, rs117896735, rs3793947, rs329648, rs76904798, rs11060180, rs11158026, 

rs1555399, rs2414739, rs14235, rs17649553, rs12456492, rs62120679, rs8118008, rs34016896, 

rs591323, rs60298754, rs7077361, rs11868035, and rs2823357) [12] including any SNP that was 

significant in the discovery phase and/or joint analysis. SNPs were elaborated to match the SNP 

coordinates on the human genome build GRCh37/hg19 (January 2017, 

https://data.broadinstitute.org/mpg/snpsnap/) and retrieve the IDs of the genes contained in the 

matched loci (reference EU 1000G; locus definition by linkage disequilibrium (LD) r2 > 0.5; SNPs of 

the HLA-locus were included). The genes identified through SNPSNAP were matched with the 

genes encoding proteins highlighted by WPPINA as relevant to PD associated risk-processes to 

aid prioritization of genes within the PD-GWAS loci. Results were statistically evaluated by 

generating 100,000 random gene-sets of similar size to the lists of open reading frames in LD with 

the PD-GWAS SNPs as detailed below.  
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Statistical validation of the GWAS candidate genes prioritization 

To statistically validate our results we generated (100,000 times) two random gene-sets (length of 

the random gene-sets: n=127 and 83) to numerically represent the lists of ORFs defined by 

building cis-haplotypes (with LD r2 = 0.5 and 0.8) around the PD-GWAS SNPs. We then matched 

the random gene-sets with the proteins contributing to the enrichment of the PD-specific functional 

blocks. Based on these 100,000 simulated experiments we calculated the p-values associated with 

the experimental analysis showing strong statistical significance (Supplementary Figure 1, p=0.004 

for LD r2 ≥ 0.5 and p=0.0053 for LD r2 ≥ 0.8). Additionally, analytic p-values were generated using 

the hypergeometric distribution (with the following parameters: 19 or 27 = real matches for LD r2 ≥ 

0.8 and LD r2 ≥ 0.5 respectively, 2978 = all proteins relevant for PD processes, 17113 = all 

proteins, 83 or 127 = ORFs in the LD r2 ≥ 0.8 and LD r2 ≥ 0.5 haplotypes respectively), leading to 

similar results: (p=0.018 for LD r2 ≥ 0.5 and p=0.017 for LD r2 ≥ 0.8). All this taken together 

indicates that the matches between the proteins that are key functional factors in the PD protein 

network and the genes within the PD loci are statistically unlikely to be random. We undertook an 

additional validation step by assessing the total number of annotations reported in GO for each 

single gene within the earlier gene-sets (ORFs) – defined by building cis-haplotypes around the 

PD-GWAS SNPs – to verify potential annotation bias (i.e. whether the number of GO annotation for 

one [or multiple] gene[s] exceeded that of other genes, thus impacting the specificity of the GWAS 

loci prioritization). As shown in Supplementary Figure 2, the number of annotations per genes in 

GO does not influence prioritization specificity. 

Cell type expression 

Cell specific expression of the genes prioritized by the PD-GWAS analysis has been evaluated 

through the RNA expression archive at www.brainrnaseq.org [13]. The individual expression FPKM 

data have been downloaded for human temporal lobe cortex mature astrocytes, neurons, 

microglia, oligodendrocytes and endothelial cells from supplementary materials of Zhang et al [13]. 

For each cell type we calculated the average FPKM across the individual that were used in the 

study by Zhang et al [13]. We evaluated cell specific expression profile for each single gene our 
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pipeline prioritized for each PD locus. We considered as enriched any expression value above 5% 

the average expression across the different cell types (see above). 

Software 

Data was handled, filtered and scored through in-house R scripts (https://www.r-project.org/) as 

described before [9]. The final network was visualized through the freely available Cytoscape 2.8.2 

software[14][32][32] and analyzed through the network analysis plug-in [14]. 
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