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Mutations in the Autoregulatory
Domain of b-Tubulin 4a Cause

Hereditary Dystonia

Joshua Hersheson, MD,1 Niccolo E. Mencacci, MD,1,2 Mary Davis, PhD,1

Nicola MacDonald, MD,3 Daniah Trabzuni, MSc,1,5 Mina Ryten, MD, PhD,1

Alan Pittman, PhD,1 Reema Paudel, PhD,1 Eleanna Kara, MD,1

Katherine Fawcett, PhD,1 Vincent Plagnol, PhD,1 Kailash P. Bhatia, MD,1

Alan J. Medlar, PhD,4 Horia C. Stanescu, MD,4 John Hardy, PhD,1

Robert Kleta, MD,4 Nicholas W. Wood, MD,1 and Henry Houlden, MD,1

Dystonia type 4 (DYT4) was first described in a large family from Heacham in Norfolk with an autosomal dominantly
inherited whispering dysphonia, generalized dystonia, and a characteristic hobby horse ataxic gait. We carried out a
genetic linkage analysis in the extended DYT4 family that spanned 7 generations from England and Australia, reveal-
ing a single LOD score peak of 6.33 on chromosome 19p13.12-13. Exome sequencing in 2 cousins identified a single
cosegregating mutation (p.R2G) in the b-tubulin 4a (TUBB4a) gene that was absent in a large number of controls.
The mutation is highly conserved in the b-tubulin autoregulatory MREI (methionine–arginine–glutamic acid–isoleucine)
domain, highly expressed in the central nervous system, and extensive in vitro work has previously demonstrated
that substitutions at residue 2, specifically R2G, disrupt the autoregulatory capability of the wild-type b-tubulin pep-
tide, affirming the role of the cytoskeleton in dystonia pathogenesis.
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Primary torsion dystonias (PTDs) are a group of dis-

orders characterized by involuntary muscle contrac-

tions affecting 1 or more sites of the body, resulting in

twisting and repetitive movements or abnormal pos-

tures.1,2 There is a wide phenotypic spectrum associated

with PTDs, which often show significant intrafamilial

variability.3–5 PTDs can be generalized or focal and have

either an early or a late onset.6 To date, 6 autosomal

dominant (dystonia type [DYT] 1, 4, 6, 7, 13, and 21)

loci and 2 autosomal recessive (DYT2 and 17) loci have

been identified.7–16 Three genes with autosomal domi-

nant inheritance have been determined so far. DYT1 is

caused by mutations in TOR1A,13 and DYT6 is caused

by mutations in THAP18 and CIZ117 on chromosome

9q34.

DYT4 was first described in 1985 by forensic

psychiatrist Neville Parker15 in a large family with third dec-

ade onset of autosomal dominantly inherited whispering

dysphonia and generalized dystonia. More than 30 affected

individuals have been reported, typically presenting with a

laryngeal dysphonia progressing to a generalized dystonia

with a peculiar “hobby horse” ataxic gait. The family origi-

nally descended from an affected male who was born in

1801 in the small rural coastal town of Heacham in

Norfolk. He had 9 children. Several lived in the Heacham

and Dersingham area; 1 likely affected son had 3 affected
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daughters, and 2 of them emigrated in 1886 to Townsville,

Australia. Several affected and unaffected family members

remain in England and Australia, some distantly related;

however, no other similar kindred have so far been described

worldwide with this phenotype. Linkage analysis in this

family has excluded known dystonia loci.15,18–22 A recently

published review of the surviving Australian affected family

members provided additional information about the family

and disease phenotype, indicating frequent progression to

generalized and gait dystonia, with 5 of 9 cases exhibiting

the unusual gait pattern described by Parker.21

We report the identification of genetic linkage in

this family to chromosome 19p13.12-13 with a highly

significant LOD score of 6.33. We subsequently carried

out exome sequencing in 2 affected cousins to identify a

single mutation in the autoregulatory MREI (methio-

nine–arginine–glutamic acid–isoleucine) domain of the

b-tubulin-4a (TUBB4a) gene. This conserved mutation

is highly likely to be pathogenic based on the segrega-

tion, absence in a large number of controls, expression

data, and the proven effect of b-tubulin MREI domain

mutations.

TABLE 1. Clinical Characteristics of Selected Affected Family Members

Patient
ID

Age at
Onset, yr

Age at
Examination, yr

Clinical Characteristics

V-16 30 44 Dysphonia, progressing over 2 years until patient unable
to speak; cervical dystonia (35 years)

V-2 21 42 Dysphonia (rapid progression resulting in psychiatric referral);
swallowing difficulties (25 years), cervical dystonia (34 years),
gait affected (37 years)

V-24 23 31 Dysphonia; progression over 6 years to involve cervical muscles,
tongue, followed by limb dystonia

V-14 37 60 Onset with stooped posture; progressive dysphonia with swallowing
difficulties over 5 years; cervical and oral dystonia; wheelchair
bound (53 years)

V-26 13 29 Severe dystonic gait, hepatitis, and hemolytic anemia; KF rings;
ataxia; diagnosed as having Wilson disease but with additional
dystonic features typical of DYT4

V-27 15 29 Dysarthria; KF rings; upper limb dystonia; diagnosed as having
Wilson disease but with additional dystonic features typical
of DYT4

V-20 28 37 Cervical dystonia; progressive dysphonia (30 years); no swallowing
difficulties; left hemidystonia (32 years)

V-18 13 35 Dysphonia; cervical dystonia (14 years)

The patient ID refers to the position of the individual on the family tree as per Figure 1.

DYT4 5 dystonia type 4; KF 5 Kayser–Fleischer.

FIGURE 1: Pedigree of the dystonia type 4 family. Where mutation screening has been performed, individuals are marked with either wt
(wild-type allele) or m (R2G heterozygote); exome indicates exome sequencing performed. The symbols ( , , ) indicates individuals
included in linkage analysis. VI-27 and VI-28 were known to have Wilson disease and were also heterozygous for the R2G variant.
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Subjects and Methods

Blood samples were collected and DNA extracted with

informed consent from 38 family members from the original

extended family seen by Neville Parker (marked with either wt

or m on the pedigree in Fig 1). Clinical details of affected fam-

ily members have been reported previously.15,20,21 Linkage to

known loci was previously excluded, and sequencing of the

TOR1A and THAP1 genes was negative. Table 1 details the

clinical features of selected affected family members, obtained

through direct patient interview and review of historical patient

records. Exome sequencing was performed on 2 cases (VI-2 and

VII-6). An additional 95 UK dystonia families and 75 dystonia

brains cases were further analyzed and found negative. This

mutation was absent from 1,045 UK control individuals and

absent in 7,203 exomes from the University College London

(UCL) and National Heart, Lung, and Blood Institute exome

sequencing projects.

Exome sequencing and interpretation methods, family

mutation screening, and expression analysis details23 are given

in detail in the Supplementary Methods.

Genetic Linkage Analysis
This was carried out on 19 family members (marked on pedi-

gree in Fig 1), comprising 10 unaffected and 9 affected cases.

These were genotyped using Illumina CytoSNP12 arrays with

301,232 genome-wide single nucleotide polymorphism (SNP)

markers, and the raw data processed using GenomeStudio soft-

ware (Illumina, San Diego, CA). Genotypes were examined

with the use of multipoint parametric linkage analysis, and hap-

lotype reconstruction was performed with Simwalk2.24 There

were 24,000 informative SNPs, equally spaced 0.1cM apart,

used in the analysis. Genotype data were formatted for Sim-

walk2 using Mega2 (version 4.0)25 via ALOHOMORA.26

Mendelian inconsistencies were checked with PedCheck (version

1.1).27 An autosomal dominant model was specified with an

estimated allele frequency of 0.0001 and 90% penetrance. The

linkage region identified was subsequently used to filter the

genetic variants obtained from exome sequencing.

Results

Linkage to the known DYT genetic loci was excluded by

multipoint parametric linkage analysis, which identified,

across the whole autosomal genome, a single significant

linked region on chromosome 19p13.12-13 between SNP

markers rs12977803 and rs2303099. The maximum LOD

score between these markers was 6.33. There is some his-

torical evidence in the first and second generation of the

family tree of male-to-male transmission, and there were

no other regions of linkage in the genome (Fig 2).

FIGURE 2: Multipoint parametric linkage analysis of the kindred indicating a single linkage peak at 19p13.3 with an LOD score
of 6.33. [Color figure can be viewed in the online issue, which is available at www.annalsofneurology.org.]

TABLE 2. Results from Exome Sequencing of
Patients V-2 and VI-6 with the Variants That Were
Identified

Variants Patient

V-2 VI-6

Unique reads 136,291,642 137,233,190

Aligned reads, % 86.2 85.4

Mean depth 102 106

Total variants 23,398 23,701

Heterozygous
variants

14,333 14,207

Excluding
synonymous
variants

7,294 7,119

Novel variants 153 156

Variants in
linkage region

3 3

Shared variants 2 2

The patient ID refers to the position of the individual on
the family tree as per Figure 1.
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Exome sequencing was performed on 2 affected

cousins. A summary of the data can be found in Table 2.

Following alignment and quality assessment of the data,

23398 and 23701 variants were identified in exome data

for VI-2 and VII-6, respectively. The filtering strategy

undertaken initially excluded homozygous and synony-

mous variants. Variants were then filtered against several

control data sets, including the 1000 Genomes, Exome

Variant Server, UCL Exome, and cg69 databases, but not

dbSNP because of concerns about pathological SNPs

being uploaded to it.28 In total, 153 and 156 novel var-

iants were identified in the 2 respective patients, 3 of

which were located within the linkage region. Both indi-

viduals shared 2 novel variants within the linkage region

(see Table 2, Fig 1): TUBB4a (c.4C>G, p.R2G) and

FCER2 (c.947C>T, p.S316F).

The TUBB4a variant is located in the highly con-

served autoregulatory MREI domain in exon 1 of

FIGURE 3: Sequence chromatogram showing (A) an unaffected family member with the wild-type sequence and (B) an affected
family member with a heterozygous c.4C>G: p.R2G mutation. [Color figure can be viewed in the online issue, which is available
at www.annalsofneurology.org.]

TABLE 3. Multispecies Protein Sequence Alignment of b-Tubulin Showing the Highly Conserved MREI
Subsequence

Species Protein Sequence Alignment, b-Tubulin

Homo (human) MREIVHLQAGQCGNQIGAKFWEVISDEHGIDPTGTYHGD

Macaca (macaque) MREIVHLQAGQCGNQIGAKFWEVISDEHGIDPTGTYHGD

Bos (cow) MREIVHIQAGQCGNQIGAKFWEVISDEHGIDPTGTYHGD

Mus (mouse) MREIVHIQAGQCGNQIGAKFWEVISDEHGIDPTGTYHGD

Xenopus (frog) MREIVHLQAGQCGNQIGAKFWEVISDEHGIDPTGAYHGD

Arabidopsis (cress) MREILHIQGGQCGNQIGSKFWEVICDEHGIDSTGRYSGD

Dictyosteliida (slime mold) MREIVQIQAGQCGNQIGSKFWEVISEEHGIQSDGFHAGG
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TUBB4a and results in an arginine to glycine (p.R2G)

amino acid substitution (Fig 3). The R2G mutation

cosegregated perfectly with the disease phenotype, with

all affected individuals having the R2G variant. The ge-

notypes of individuals screened in the segregation analysis

are indicated in Figure 1 with either wt (wild type) or m

(mutant allele: c.4C>G, p.R2G heterozygote). There

were no known unaffected carriers, although individuals

younger than 18 years were not analyzed. This variant

was not found in any of the reference SNP, exome, or

in-house exome databases queried, and was not present

in 1,045 ethnically matched UK control individuals. The

variant was predicted by in silico analysis (SIFT29 and

PolyPhen230) to be deleterious and was highly conserved

in multispecies (Table 3) and multitubulin alignment

(Table 4). FCER2, however, codes for a low-affinity

immunoglobulin E receptor involved in allergy and

resistance to parasites. The FCER2 variant did not segre-

gate with the disease.

Expression of TUBB4a gene in 10 brain regions

from 134 normal individuals was assessed using Affyme-

trix (Santa Clara, CA) Exon 1.0 ST Arrays, which identi-

fied high expression in the brain. These brains were

negative for defects in the TUBB4a gene using Sanger

sequencing. The highest expression was in the cerebel-

lum, followed by putamen and white matter. There was

TABLE 4. Conservation of the Protein Sequences in the Different Tubulin Isotypes

Tubulin Isotype Tissue Specificity Protein Sequence Alignment (human)

TUBB4a Brain-specific MREIVHLQAGQCGNQIGAKFWEVISDEHGIDPTGTYH

TUBB Ubiquitous MREIVHIQAGQCGNQIGAKFWEVISDEHGIDPTGTYH

TUBB1 Hematopoietic cells MREIVHIQIGQCGNQIGAKFWEMIGEEHGIDLAGSDR

TUBB2a Brain-specific MREIVHIQAGQCGNQIGAKFWEVISDEHGIDPTGSYH

TUBB2b Brain-specific MREIVHIQAGQCGNQIGAKFWEVISDEHGIDPTGSYH

TUBB3 Neuron-specific MREIVHIQAGQCGNQIGAKFWEVISDEHGIDPSGNYV

TUBB4b Ubiquitous MREIVHLQAGQCGNQIGAKFWEVISDEHGIDPTGTYH

TUBB6 Ubiquitous MREIVHIQAGQCGNQIGTKFWEVISDEHGIDPAGGYV

TUBB8 Ubiquitous MREIVLTQIGQCGNQIGAKFWEVISDEHAIDSAGTYH

The MREI subsequence can be seen at the beginning of each sequence.

FIGURE 4: Graph of the expression of the TUBB4a gene in 10 brain regions from 134 normal individuals, assessed using the Affyme-
trix Exon 1.0 ST Array. The level of TUBB4a is given as a log scale with range bars. This showed very high expression in the cerebel-
lum and in the brain overall. The following areas were studied: cerebellum (CRBL), frontal cortex (FCTX), hippocampus (HIPP),
medulla (MEDU), occipital cortex (OCTX), putamen (PUTM), substantia nigra (SNIG), temporal cortex (TCTX), thalamus (THAL), and
white matter (WHMT). [Color figure can be viewed in the online issue, which is available at www.annalsofneurology.org.]
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a 2-fold difference between the cerebellum and the thala-

mus, with the lowest brain expression (Fig 4, Table 5).

Expression of TUBB4a in other body tissues was very

low except for moderate expression in the testes (Fig 5).

Discussion

We have demonstrated through a combination of genetic

linkage analysis, exome sequencing, and expression stud-

ies that the causative mutation in the DYT4 kindred is a

heterozygous missense c.4C>G p.R2G TUBB4a muta-

tion in exon 1. The location of this mutation within the

gene is highly significant, as it is within the autoregula-

tory MREI domain of the TUBB4a sequence. All b-

tubulins contain this MREI domain, at the first 4 amino

acid positions, and this is highly conserved throughout

all eukaryotic cells. We also show that TUBB4a is highly

expressed in all brain regions (see Fig 4), particularly the

cerebellum, which is thought to have a central role in the

pathogenesis of dystonia.31,32 The combination of link-

age analysis and exome sequencing has previously been

successful in identifying other dystonia genes such as

CIZ1.17

Tubulin is a globular protein and the main constit-

uent of microtubules, a major cytoskeletal component.

Tubulins are formed from heterodimers of a and b subu-

nits and are expressed in all eukaryotic cells.33 Multiple

isotypes are present with a high degree of homology,

differing only at the C-terminal domain, and are differ-

entially expressed according to tissue type.34 The MREI

tetrapeptide sequence at the start of the N-terminal

domain has been demonstrated to be necessary for the

autoregulation of the b-tubulin mRNA transcript.35

Autoregulated instability of tubulin mRNA is a regula-

tory mechanism whereby tubulin mRNA is degraded by

an as yet unknown mechanism involving an interaction

with the MREI domain of the nascent tubulin peptide as

it emerges from the ribosome.36 It has been hypothesized

that such a regulatory mechanism has evolved to ensure a

stoichiometric balance of a and b subunits.36

Site-directed mutagenesis has been used to demon-

strate the effect of amino acid substitutions, including

the DYT4 c.4C>G p.R2G mutation, on tubulin mRNA

autoregulation compared with the wild-type arginine at

residue 2.37 It was shown that peptides with the wild-

type MREI sequence retain their autoregulatory ability

and lead to destabilization of b-tubulin mRNA following

TABLE 5. Expression of TUBB4a in 10 Brain
Regions from 134 Normal Individuals Assessed
Using the Affymetrix Exon 1.0 ST Array

Region
Sampled

Brain
Regions, No.

Mean TUBB4a
Expression

CRBL 130 10.84

FCTX 127 10.2

HIPP 122 10.2

MEDU 119 10.47

OCTX 129 10.19

PUTM 129 10.18

SNIG 101 9.94

TCTX 119 10.09

The values for TUBB4a expression are corrected for brain
bank, batch effect, and gender effects. See Trabzuni et al for
detailed methods.23

CRBL 5 cerebellum; FCTX 5 frontal cortex; HIPP 5
hippocampus; MEDU 5 medulla; OCTX 5 occipital
cortex; PUTM 5 putamen; SNIG 5 substantia nigra;
TCTX 5 temporal cortex.

FIGURE 5: Expression of TUBB4a (top row) in various human tissues was determined by reverse transcriptase polymerase chain
reaction using gene-specific primers against cDNA generated from tissue-specific RNA as compared to the housekeeping gene
beta2-microglobulin (bottom row). Expression was high in the brain and very low in other tissues, except for moderate expres-
sion in the testes. 1 5 ladder; 2 5 adipose tissue; 3 5 brain; 4 5 esophagus; 5 5 colon; 6 5 heart; 7 5 liver; 8 5 ovary; 9 5

cervix; 10 5 bladder; 11 5 testes; 12 5 no cDNA control.
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elevation of intracellular tubulin subunit concentration.

Alternate amino acids at this position, including p.R2G,

abrogate this autoregulatory capability with no reduction

in mRNA levels seen following an increase in tubulin

subunit levels.28 In addition, the wild-type arginine at

residue 2 prevents cleavage of the terminal methionine,

whereas glycine promotes its removal,38 which may fur-

ther impair the autoregulatory function of unpolymerized

b-tubulin monomers.

The DYT4 family investigated here is the largest

reported in the literature stretching back over many gen-

erations with this unusual phenotype. Other smaller kin-

dreds have been reported with similar clinical features

that in addition have similarities to some DYT6 families.

We screened a number of autosomal dominant dystonia

families and dystonia brains collected at our institute for

TUBB4A mutations, and although no other mutations

were identified, it will be important to analyze this gene

in other similar pedigrees. A number of human diseases

are caused by heterozygous mutations in several genes

encoding a and b isotypes. Missense mutations in

TUBA1A (class 1a a-tubulin), TUBB2B (class 2b b-tubu-

lin), and TUBB3 (class 3 b-tubulin) have all been

reported and result in a range of severe neurological

manifestations.38,39

There are few common molecular pathways that

have emerged to link the dystonia-related genes and the

clinical outcome. The cytoskeleton has a key role in

coordinating the interactions between the transmembrane

proteins of the inner and outer membrane that connect

and position nuclei to the cytoplasmic cytoskeleton. In

DYT1, mutant TOR1A interferes with the nucleocytoske-

letal network, possibly by restricting movement of these

particles/filaments, and hence this may affect develop-

ment of neuronal pathways in the brain.40,41 Mutant

TUBB4a could act through a similar pathway to

TOR1A, with impaired tubulin autoregulation, which

may result in a stoichiometric imbalance of a and b
tubulin subunits and aberrant cytoskeletal binding.42

Further work on this interaction will be important to

define the role of TUBB4a, the cytoskeleton, and the

potential interactions with other dystonia disease genes.
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