535 research outputs found

    Medical graduates’ preparedness to practice: A comparison of undergraduate medical school training

    Get PDF
    Background: There is evidence that newly qualified doctors do not feel prepared to start work. This study examined views of first year Foundation doctors (F1s) regarding how prepared they felt by their undergraduate medical education for skills required during the first Foundation training year in relation to their type of training. Method: One-hundred and eighty two F1s completed a questionnaire during their first rotation of Foundation training. Analysis was conducted by type of medical school training: Problem-Based Learning (PBL), Traditional or Reformed. Results: F1s from medical schools with a PBL curriculum felt better prepared for tasks associated with communication and team working, and paperwork than graduates from the other medical school types; but the majority of F1s from all three groups felt well prepared for most areas of practice. Less than half of graduates in all three groups felt well prepared to deal with a patient with neurological/visual problems; write referral letters; understand drug interactions; manage pain; and cope with uncertainty. F1s also indicated that lack of induction or support on starting work was affecting their ability to work in some areas. Conclusions: Whilst F1s from medical schools with a PBL curriculum did feel better prepared in multiple areas compared to graduates from the other medical school types, specific areas of unpreparedness related to undergraduate and postgraduate medical training were identified across all F1s. These areas need attention to ensure F1s are optimally prepared for starting work

    svdPPCS: an effective singular value decomposition-based method for conserved and divergent co-expression gene module identification

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Comparative analysis of gene expression profiling of multiple biological categories, such as different species of organisms or different kinds of tissue, promises to enhance the fundamental understanding of the universality as well as the specialization of mechanisms and related biological themes. Grouping genes with a similar expression pattern or exhibiting co-expression together is a starting point in understanding and analyzing gene expression data. In recent literature, gene module level analysis is advocated in order to understand biological network design and system behaviors in disease and life processes; however, practical difficulties often lie in the implementation of existing methods.</p> <p>Results</p> <p>Using the singular value decomposition (SVD) technique, we developed a new computational tool, named svdPPCS (<b>SVD</b>-based <b>P</b>attern <b>P</b>airing and <b>C</b>hart <b>S</b>plitting), to identify conserved and divergent co-expression modules of two sets of microarray experiments. In the proposed methods, gene modules are identified by splitting the two-way chart coordinated with a pair of left singular vectors factorized from the gene expression matrices of the two biological categories. Importantly, the cutoffs are determined by a data-driven algorithm using the well-defined statistic, SVD-p. The implementation was illustrated on two time series microarray data sets generated from the samples of accessory gland (ACG) and malpighian tubule (MT) tissues of the line W<sup>118 </sup>of <it>M. drosophila</it>. Two conserved modules and six divergent modules, each of which has a unique characteristic profile across tissue kinds and aging processes, were identified. The number of genes contained in these models ranged from five to a few hundred. Three to over a hundred GO terms were over-represented in individual modules with FDR < 0.1. One divergent module suggested the tissue-specific relationship between the expressions of mitochondrion-related genes and the aging process. This finding, together with others, may be of biological significance. The validity of the proposed SVD-based method was further verified by a simulation study, as well as the comparisons with regression analysis and cubic spline regression analysis plus PAM based clustering.</p> <p>Conclusions</p> <p>svdPPCS is a novel computational tool for the comparative analysis of transcriptional profiling. It especially fits the comparison of time series data of related organisms or different tissues of the same organism under equivalent or similar experimental conditions. The general scheme can be directly extended to the comparisons of multiple data sets. It also can be applied to the integration of data sets from different platforms and of different sources.</p

    Constraints on Nucleon Decay via "Invisible" Modes from the Sudbury Neutrino Observatory

    Get PDF
    Data from the Sudbury Neutrino Observatory have been used to constrain the lifetime for nucleon decay to ``invisible'' modes, such as n -> 3 nu. The analysis was based on a search for gamma-rays from the de-excitation of the residual nucleus that would result from the disappearance of either a proton or neutron from O16. A limit of tau_inv > 2 x 10^{29} years is obtained at 90% confidence for either neutron or proton decay modes. This is about an order of magnitude more stringent than previous constraints on invisible proton decay modes and 400 times more stringent than similar neutron modes.Comment: Update includes missing efficiency factor (limits change by factor of 2) Submitted to Physical Review Letter

    Cellular Radiosensitivity: How much better do we understand it?

    Get PDF
    Purpose: Ionizing radiation exposure gives rise to a variety of lesions in DNA that result in genetic instability and potentially tumorigenesis or cell death. Radiation extends its effects on DNA by direct interaction or by radiolysis of H2O that generates free radicals or aqueous electrons capable of interacting with and causing indirect damage to DNA. While the various lesions arising in DNA after radiation exposure can contribute to the mutagenising effects of this agent, the potentially most damaging lesion is the DNA double strand break (DSB) that contributes to genome instability and/or cell death. Thus in many cases failure to recognise and/or repair this lesion determines the radiosensitivity status of the cell. DNA repair mechanisms including homologous recombination (HR) and non-homologous end-joining (NHEJ) have evolved to protect cells against DNA DSB. Mutations in proteins that constitute these repair pathways are characterised by radiosensitivity and genome instability. Defects in a number of these proteins also give rise to genetic disorders that feature not only genetic instability but also immunodeficiency, cancer predisposition, neurodegeneration and other pathologies. Conclusions: In the past fifty years our understanding of the cellular response to radiation damage has advanced enormously with insight being gained from a wide range of approaches extending from more basic early studies to the sophisticated approaches used today. In this review we discuss our current understanding of the impact of radiation on the cell and the organism gained from the array of past and present studies and attempt to provide an explanation for what it is that determines the response to radiation

    Microarray gene expression profiling and analysis in renal cell carcinoma

    Get PDF
    BACKGROUND: Renal cell carcinoma (RCC) is the most common cancer in adult kidney. The accuracy of current diagnosis and prognosis of the disease and the effectiveness of the treatment for the disease are limited by the poor understanding of the disease at the molecular level. To better understand the genetics and biology of RCC, we profiled the expression of 7,129 genes in both clear cell RCC tissue and cell lines using oligonucleotide arrays. METHODS: Total RNAs isolated from renal cell tumors, adjacent normal tissue and metastatic RCC cell lines were hybridized to affymatrix HuFL oligonucleotide arrays. Genes were categorized into different functional groups based on the description of the Gene Ontology Consortium and analyzed based on the gene expression levels. Gene expression profiles of the tissue and cell line samples were visualized and classified by singular value decomposition. Reverse transcription polymerase chain reaction was performed to confirm the expression alterations of selected genes in RCC. RESULTS: Selected genes were annotated based on biological processes and clustered into functional groups. The expression levels of genes in each group were also analyzed. Seventy-four commonly differentially expressed genes with more than five-fold changes in RCC tissues were identified. The expression alterations of selected genes from these seventy-four genes were further verified using reverse transcription polymerase chain reaction (RT-PCR). Detailed comparison of gene expression patterns in RCC tissue and RCC cell lines shows significant differences between the two types of samples, but many important expression patterns were preserved. CONCLUSIONS: This is one of the initial studies that examine the functional ontology of a large number of genes in RCC. Extensive annotation, clustering and analysis of a large number of genes based on the gene functional ontology revealed many interesting gene expression patterns in RCC. Most notably, genes involved in cell adhesion were dominantly up-regulated whereas genes involved in transport were dominantly down-regulated. This study reveals significant gene expression alterations in key biological pathways and provides potential insights into understanding the molecular mechanism of renal cell carcinogenesis

    Spatial Orientation in Japanese Quails (Coturnix coturnix japonica)

    Get PDF
    Finding a given location can be based on a variety of strategies, for example on the estimation of spatial relations between landmarks, called spatial orientation. In galliform birds, spatial orientation has been demonstrated convincingly in very young domestic chicks. We wanted to know whether adult Japanese quails (Coturnix coturnix japonica) without food deprivation are also able to use spatial orientation. The quails had to learn the relation of a food location with four conspicuous landmarks which were placed in the corners of a square shaped arena. They were trained to find mealworms in three adjacent food cups in a circle of 20 such cups. The rewarded feeders were located during training between the same two landmarks each of which showed a distinct pattern. When the birds had learned the task, all landmarks were displaced clockwise by 90 degrees. When tested in the new situation, all birds redirected their choices with respect to the landmark shift. In subsequent tests, however, the previously correct position was also chosen. According to our results, quails are using conspicuous landmarks as a first choice for orientation. The orientation towards the previously rewarded location, however, indicates that the neuronal representation of space which is used by the birds also includes more fine grain, less conspicuous cues, which are probably also taken into account in uncertain situations. We also presume that the rare orientation towards never rewarded feeders may be due to a foraging strategy instead of being mistakes

    Targeted Delivery of Chemotherapy Agents Using a Liver Cancer-Specific Aptamer

    Get PDF
    Using antibody/aptamer-drug conjugates can be a promising method for decreasing toxicity, while increasing the efficiency of chemotherapy.In this study, the antitumor agent Doxorubicin (Dox) was incorporated into the modified DNA aptamer TLS11a-GC, which specifically targets LH86, a human hepatocellular carcinoma cell line. Cell viability tests demonstrated that the TLS11a-GC-Dox conjugates exhibited both potency and target specificity. Importantly, intercalating Dox into the modified aptamer inhibited nonspecific uptake of membrane-permeable Dox to the non-target cell line. Since the conjugates are selective for cells that express higher amounts of target proteins, both criteria noted above are met, making TLS11a-GC-Dox conjugates potential candidates for targeted delivery to liver cancer cells.Considering the large number of available aptamers that have specific targets for a wide variety of cancer cells, this novel aptamer-drug intercalation method will have promising implications for chemotherapeutics in general

    Role of structural dynamics at the receptor G protein interface for signal transduction

    Get PDF
    GPCRs catalyze GDP/GTP exchange in the Ξ±-subunit of heterotrimeric G proteins (Gαßγ) through displacement of the GΞ± C-terminal Ξ±5 helix, which directly connects the interface of the active receptor (R*) to the nucleotide binding pocket of G. Hydrogen-deuterium exchange mass spectrometry and kinetic analysis of R* catalysed G protein activation have suggested that displacement of Ξ±5 starts from an intermediate GDP bound complex (R*β€’GGDP). To elucidate the structural basis of receptor-catalysed displacement of Ξ±5, we modelled the structure of R*β€’GGDP. A flexible docking protocol yielded an intermediate R*β€’GGDP complex, with a similar overall arrangement as in the X-ray structure of the nucleotide free complex (R*β€’Gempty), however with the Ξ±5 C-terminus (GΞ±CT) forming different polar contacts with R*. Starting molecular dynamics simulations of GΞ±CT bound to R* in the intermediate position, we observe a screw-like motion, which restores the specific interactions of Ξ±5 with R* in R*β€’Gempty. The observed rotation of Ξ±5 by 60Β° is in line with experimental data. Reformation of hydrogen bonds, water expulsion and formation of hydrophobic interactions are driving forces of the Ξ±5 displacement. We conclude that the identified interactions between R* and G protein define a structural framework in which the Ξ±5 displacement promotes direct transmission of the signal from R* to the GDP binding pocket

    Jet energy measurement with the ATLAS detector in proton-proton collisions at root s=7 TeV

    Get PDF
    The jet energy scale and its systematic uncertainty are determined for jets measured with the ATLAS detector at the LHC in proton-proton collision data at a centre-of-mass energy of √s = 7TeV corresponding to an integrated luminosity of 38 pb-1. Jets are reconstructed with the anti-kt algorithm with distance parameters R=0. 4 or R=0. 6. Jet energy and angle corrections are determined from Monte Carlo simulations to calibrate jets with transverse momenta pTβ‰₯20 GeV and pseudorapidities {pipe}Ξ·{pipe}<4. 5. The jet energy systematic uncertainty is estimated using the single isolated hadron response measured in situ and in test-beams, exploiting the transverse momentum balance between central and forward jets in events with dijet topologies and studying systematic variations in Monte Carlo simulations. The jet energy uncertainty is less than 2. 5 % in the central calorimeter region ({pipe}Ξ·{pipe}<0. 8) for jets with 60≀pT<800 GeV, and is maximally 14 % for pT<30 GeV in the most forward region 3. 2≀{pipe}Ξ·{pipe}<4. 5. The jet energy is validated for jet transverse momenta up to 1 TeV to the level of a few percent using several in situ techniques by comparing a well-known reference such as the recoiling photon pT, the sum of the transverse momenta of tracks associated to the jet, or a system of low-pT jets recoiling against a high-pT jet. More sophisticated jet calibration schemes are presented based on calorimeter cell energy density weighting or hadronic properties of jets, aiming for an improved jet energy resolution and a reduced flavour dependence of the jet response. The systematic uncertainty of the jet energy determined from a combination of in situ techniques is consistent with the one derived from single hadron response measurements over a wide kinematic range. The nominal corrections and uncertainties are derived for isolated jets in an inclusive sample of high-pT jets. Special cases such as event topologies with close-by jets, or selections of samples with an enhanced content of jets originating from light quarks, heavy quarks or gluons are also discussed and the corresponding uncertainties are determined. Β© 2013 CERN for the benefit of the ATLAS collaboration

    Blood Flow and Glucose Metabolism in Stage IV Breast Cancer: Heterogeneity of Response During Chemotherapy

    Get PDF
    Objective: The purpose of the study was to compare early changes in blood flow (BF) and glucose metabolism (MRglu) in metastatic breast cancer lesions of patients treated with chemotherapy. Methods: Eleven women with stage IV cancer and lesions in breast, lymph nodes, liver, and bone were scanned before treatment and after the first course of chemotherapy. BF, distribution volume of water (Vd), MRglu/BF ratio, MRgluand its corresponding rate constants K1and k3were compared per tumor lesion before and during therapy. Results: At baseline, mean BF and MRgluvaried among different tumor lesions, but mean Vdwas comparable in all lesions. After one course of chemotherapy, mean MRgludecreased in all lesions. Mean BF decreased in breast and node lesions and increased in bone lesions. Vddecreased in breast and nodes, but did not change in bone lesions. The MRglu/BF ratio decreased in breast and bone lesions and increased in node lesions. In patients with multiple tumor lesions BF and MRgluresponse could be very heterogeneous, even within similar types of metastases. BF and MRgluincreased in lesions of patients who experienced early disease progression or showed no response during clinical follow-up. Conclusion: BF and MRgluchanges separately give unique information on different aspects of tumor response to chemotherapy. Changes in BF and MRgluparameters can be remarkably heterogeneous in patients with multiple lesions
    • …
    corecore