26 research outputs found

    Mutation analysis and characterization of ATR sequence variants in breast cancer cases from high-risk French Canadian breast/ovarian cancer families

    Get PDF
    BACKGROUND: Ataxia telangiectasia-mutated and Rad3-related (ATR) is a member of the PIK-related family which plays, along with ATM, a central role in cell-cycle regulation. ATR has been shown to phosphorylate several tumor suppressors like BRCA1, CHEK1 and TP53. ATR appears as a good candidate breast cancer susceptibility gene and the current study was designed to screen for ATR germline mutations potentially involved in breast cancer predisposition. METHODS: ATR direct sequencing was performed using a fluorescent method while widely available programs were used for linkage disequilibrium (LD), haplotype analyses, and tagging SNP (tSNP) identification. Expression analyses were carried out using real-time PCR. RESULTS: The complete sequence of all exons and flanking intronic sequences were analyzed in DNA samples from 54 individuals affected with breast cancer from non-BRCA1/2 high-risk French Canadian breast/ovarian families. Although no germline mutation has been identified in the coding region, we identified 41 sequence variants, including 16 coding variants, 3 of which are not reported in public databases. SNP haplotypes were established and tSNPs were identified in 73 healthy unrelated French Canadians, providing a valuable tool for further association studies involving the ATR gene, using large cohorts. Our analyses led to the identification of two novel alternative splice transcripts. In contrast to the transcript generated by an alternative splicing site in the intron 41, the one resulting from a deletion of 121 nucleotides in exon 33 is widely expressed, at significant but relatively low levels, in both normal and tumoral cells including normal breast and ovarian tissue. CONCLUSION: Although no deleterious mutations were identified in the ATR gene, the current study provides an haplotype analysis of the ATR gene polymorphisms, which allowed the identification of a set of SNPs that could be used as tSNPs for large-scale association studies. In addition, our study led to the characterization of a novel Δ33 splice form, which could generate a putative truncated protein lacking several functional domains. Additional studies in large cohorts and other populations will be needed to further evaluate if common and/or rare ATR sequence variants can be associated with a modest or intermediate breast cancer risk

    Effects of alirocumab on types of myocardial infarction: insights from the ODYSSEY OUTCOMES trial

    Get PDF
    Aims  The third Universal Definition of Myocardial Infarction (MI) Task Force classified MIs into five types: Type 1, spontaneous; Type 2, related to oxygen supply/demand imbalance; Type 3, fatal without ascertainment of cardiac biomarkers; Type 4, related to percutaneous coronary intervention; and Type 5, related to coronary artery bypass surgery. Low-density lipoprotein cholesterol (LDL-C) reduction with statins and proprotein convertase subtilisin–kexin Type 9 (PCSK9) inhibitors reduces risk of MI, but less is known about effects on types of MI. ODYSSEY OUTCOMES compared the PCSK9 inhibitor alirocumab with placebo in 18 924 patients with recent acute coronary syndrome (ACS) and elevated LDL-C (≥1.8 mmol/L) despite intensive statin therapy. In a pre-specified analysis, we assessed the effects of alirocumab on types of MI. Methods and results  Median follow-up was 2.8 years. Myocardial infarction types were prospectively adjudicated and classified. Of 1860 total MIs, 1223 (65.8%) were adjudicated as Type 1, 386 (20.8%) as Type 2, and 244 (13.1%) as Type 4. Few events were Type 3 (n = 2) or Type 5 (n = 5). Alirocumab reduced first MIs [hazard ratio (HR) 0.85, 95% confidence interval (CI) 0.77–0.95; P = 0.003], with reductions in both Type 1 (HR 0.87, 95% CI 0.77–0.99; P = 0.032) and Type 2 (0.77, 0.61–0.97; P = 0.025), but not Type 4 MI. Conclusion  After ACS, alirocumab added to intensive statin therapy favourably impacted on Type 1 and 2 MIs. The data indicate for the first time that a lipid-lowering therapy can attenuate the risk of Type 2 MI. Low-density lipoprotein cholesterol reduction below levels achievable with statins is an effective preventive strategy for both MI types.For complete list of authors see http://dx.doi.org/10.1093/eurheartj/ehz299</p

    Effect of alirocumab on mortality after acute coronary syndromes. An analysis of the ODYSSEY OUTCOMES randomized clinical trial

    Get PDF
    Background: Previous trials of PCSK9 (proprotein convertase subtilisin-kexin type 9) inhibitors demonstrated reductions in major adverse cardiovascular events, but not death. We assessed the effects of alirocumab on death after index acute coronary syndrome. Methods: ODYSSEY OUTCOMES (Evaluation of Cardiovascular Outcomes After an Acute Coronary Syndrome During Treatment With Alirocumab) was a double-blind, randomized comparison of alirocumab or placebo in 18 924 patients who had an ACS 1 to 12 months previously and elevated atherogenic lipoproteins despite intensive statin therapy. Alirocumab dose was blindly titrated to target achieved low-density lipoprotein cholesterol (LDL-C) between 25 and 50 mg/dL. We examined the effects of treatment on all-cause death and its components, cardiovascular and noncardiovascular death, with log-rank testing. Joint semiparametric models tested associations between nonfatal cardiovascular events and cardiovascular or noncardiovascular death. Results: Median follow-up was 2.8 years. Death occurred in 334 (3.5%) and 392 (4.1%) patients, respectively, in the alirocumab and placebo groups (hazard ratio [HR], 0.85; 95% CI, 0.73 to 0.98; P=0.03, nominal P value). This resulted from nonsignificantly fewer cardiovascular (240 [2.5%] vs 271 [2.9%]; HR, 0.88; 95% CI, 0.74 to 1.05; P=0.15) and noncardiovascular (94 [1.0%] vs 121 [1.3%]; HR, 0.77; 95% CI, 0.59 to 1.01; P=0.06) deaths with alirocumab. In a prespecified analysis of 8242 patients eligible for ≥3 years follow-up, alirocumab reduced death (HR, 0.78; 95% CI, 0.65 to 0.94; P=0.01). Patients with nonfatal cardiovascular events were at increased risk for cardiovascular and noncardiovascular deaths (P<0.0001 for the associations). Alirocumab reduced total nonfatal cardiovascular events (P<0.001) and thereby may have attenuated the number of cardiovascular and noncardiovascular deaths. A post hoc analysis found that, compared to patients with lower LDL-C, patients with baseline LDL-C ≥100 mg/dL (2.59 mmol/L) had a greater absolute risk of death and a larger mortality benefit from alirocumab (HR, 0.71; 95% CI, 0.56 to 0.90; Pinteraction=0.007). In the alirocumab group, all-cause death declined wit h achieved LDL-C at 4 months of treatment, to a level of approximately 30 mg/dL (adjusted P=0.017 for linear trend). Conclusions: Alirocumab added to intensive statin therapy has the potential to reduce death after acute coronary syndrome, particularly if treatment is maintained for ≥3 years, if baseline LDL-C is ≥100 mg/dL, or if achieved LDL-C is low. Clinical Trial Registration: URL: https://www.clinicaltrials.gov. Unique identifier: NCT01663402

    Coordination Compounds of M(II) Biometal Ions with Acid- Type Anti-inflammatory Drugs as Ligands – A Review

    Get PDF
    The cations of biometals in biological systems easily interact with various moieties of organic and inorganic biomolecules, either as natural constituents or after introduction into the body via O-, N- and S- donor atoms. Study of the interaction between M(II) biometal–O-donor ligand (drug) is of interest for various reasons: more evenly dosing of medicine and biodistribution of medicine; monitoring of its pharmacokinetics including excretion; reduction of unwanted effects of the medicine; greater antimicrobial activity; synergistic effect of the metal and medicine; and improved anti-ulcerous, antitumor and anti-bacterial activity. This paper offers an overview of the literature of published research on coordination between biometals and anti-inflammatory drugs of the acid type. The metals that the subject of focus in this review are d-metals with M(II) ions, namely, copper (Cu), zinc (Zn), cobalt (Co) and manganese (Mn).Those containing molecules with carboxyl functional groups can build complexes with coordinated number of metals of 4 and 6, of various stoichiometric structures, simple or complex, and also behave as monodentate, bidentate or bridge ligands in polynuclear complexes.Keywords: Biometals M(II), Anti-inflammatory medicine, Coordination, O-Donor ligands, Copper, Cobalt, Manganese, Zin
    corecore