52 research outputs found
Diagnosing Causes of Water Scarcity in Complex Water Resources Systems and Identifying Risk Management Actions
From the water management perspective, water scarcity is an unacceptable risk of facing water shortages to serve water demands in the near future. Water scarcity may be temporary and related to drought conditions or other accidental situation, or may be permanent and due to deeper causes such as excessive demand growth, lack of infrastructure for water storage or transport, or constraints in water management. Diagnosing the causes of water scarcity in complex water resources systems is a precondition to adopt effective drought risk management actions. In this paper we present four indices which have been developed to evaluate water scarcity. We propose a methodology for interpretation of index values that can lead to conclusions about the reliability and vulnerability of systems to water scarcity, as well as to diagnose their possible causes and to propose solutions. The described methodology was applied to the Ebro river basin, identifying existing and expected problems and possible solutions. System diagnostics, based exclusively on the analysis of index values, were compared with the known reality as perceived by system managers, validating the conclusions in all case
Hybridization in parasites: consequences for adaptive evolution, pathogenesis and public health in a changing world
[No abstract available
Macrophage phenotype is associated with disease severity in preterm infants with chronic lung disease.
The etiology of persistent lung inflammation in preterm infants with chronic lung disease of prematurity (CLD) is poorly characterized, hampering efforts to stratify prognosis and treatment. Airway macrophages are important innate immune cells with roles in both the induction and resolution of tissue inflammation
Self-Mating in the Definitive Host Potentiates Clonal Outbreaks of the Apicomplexan Parasites Sarcocystis neurona and Toxoplasma gondii
Tissue-encysting coccidia, including Toxoplasma gondii and Sarcocystis neurona, are heterogamous parasites with sexual and asexual life stages in definitive and intermediate hosts, respectively. During its sexual life stage, T. gondii reproduces either by genetic out-crossing or via clonal amplification of a single strain through self-mating. Out-crossing has been experimentally verified as a potent mechanism capable of producing offspring possessing a range of adaptive and virulence potentials. In contrast, selfing and other life history traits, such as asexual expansion of tissue-cysts by oral transmission among intermediate hosts, have been proposed to explain the genetic basis for the clonal population structure of T. gondii. In this study, we investigated the contributing roles self-mating and sexual recombination play in nature to maintain clonal population structures and produce or expand parasite clones capable of causing disease epidemics for two tissue encysting parasites. We applied high-resolution genotyping against strains isolated from a T. gondii waterborne outbreak that caused symptomatic disease in 155 immune-competent people in Brazil and a S. neurona outbreak that resulted in a mass mortality event in Southern sea otters. In both cases, a single, genetically distinct clone was found infecting outbreak-exposed individuals. Furthermore, the T. gondii outbreak clone was one of several apparently recombinant progeny recovered from the local environment. Since oocysts or sporocysts were the infectious form implicated in each outbreak, the expansion of the epidemic clone can be explained by self-mating. The results also show that out-crossing preceded selfing to produce the virulent T. gondii clone. For the tissue encysting coccidia, self-mating exists as a key adaptation potentiating the epidemic expansion and transmission of newly emerged parasite clones that can profoundly shape parasite population genetic structures or cause devastating disease outbreaks
Adaptive Management of Riverine Socio-ecological Systems
If ongoing change in ecosystems and society can render inflexible policies obsolete, then management must dynamically adapt as a counter to perennial uncertainty. This chapter describes a general synthesis of how to make decision-making more adaptive and then explores the barriers to learning in management. We then describe how one such process, known as adaptive management (AM), has been applied in different river basins, on which basis we discuss AM’s strengths and limitations in various resource management contexts
The impact of local networks on subsistence resilience and biodiversity in a low-lying Moluccan reef system between 1600 and the present
Using field data for the 1980s and historical material, I show how the central places of networks crucial for regional and long-distance trade in the Moluccas between 1600 and the present were often environmentally vulnerable volcanic islands and low-lying reefs. After reviewing existing data on hazards, and evaluating the evidence for erosion and degradation, I suggest how resilience has been historically achieved through social and material exchanges between islands, accommodating the consequences of specific perturbations. Re-interpretation of published data shows how inter-island trade has re-organised patterns of biological interaction spatially and over the long-term, helping us assesses whether in the face of climate change effects such areas are zones of robustness or of potential fragility
- …