747 research outputs found

    Cannabinoid receptor type 2 activation induces a microglial anti-inflammatory phenotype and reduces migration via MKP induction and ERK dephosphorylation

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Cannabinoid receptor type 2 (CBR2) inhibits microglial reactivity through a molecular mechanism yet to be elucidated. We hypothesized that CBR2 activation induces an anti-inflammatory phenotype in microglia by inhibiting extracellular signal-regulated kinase (ERK) pathway, via mitogen-activated protein kinase-phosphatase (MKP) induction. MKPs regulate mitogen activated protein kinases, but their role in the modulation of microglial phenotype is not fully understood.</p> <p>Results</p> <p>JWH015 (a CBR2 agonist) increased MKP-1 and MKP-3 expression, which in turn reduced p-ERK1/2 in LPS-stimulated primary microglia. These effects resulted in a significant reduction of tumor necrosis factor-α (TNF) expression and microglial migration. We confirmed the causative link of these findings by using MKP inhibitors. We found that the selective inhibition of MKP-1 by Ro-31-8220 and PSI2106, did not affect p-ERK expression in LPS+JWH015-treated microglia. However, the inhibition of both MKP-1 and MKP-3 by triptolide induced an increase in p-ERK expression and in microglial migration using LPS+JWH015-treated microglia.</p> <p>Conclusion</p> <p>Our results uncover a cellular microglial pathway triggered by CBR2 activation. These data suggest that the reduction of pro-inflammatory factors and microglial migration via MKP-3 induction is part of the mechanism of action of CBR2 agonists. These findings may have clinical implications for further drug development.</p

    Nanoscale temperature measurements using non-equilibrium Brownian dynamics of a levitated nanosphere

    Full text link
    Einstein realised that the fluctuations of a Brownian particle can be used to ascertain properties of its environment. A large number of experiments have since exploited the Brownian motion of colloidal particles for studies of dissipative processes, providing insight into soft matter physics, and leading to applications from energy harvesting to medical imaging. Here we use optically levitated nanospheres that are heated to investigate the non-equilibrium properties of the gas surrounding them. Analysing the sphere's Brownian motion allows us to determine the temperature of the centre-of-mass motion of the sphere, its surface temperature and the heated gas temperature in two spatial dimensions. We observe asymmetric heating of the sphere and gas, with temperatures reaching the melting point of the material. This method offers new opportunities for accurate temperature measurements with spatial resolution on the nanoscale, and a new means for testing non-equilibrium thermodynamicsComment: 5 pages, 4 figures, supplementary material available upon reques

    Highly Efficient Protein Misfolding Cyclic Amplification

    Get PDF
    Protein misfolding cyclic amplification (PMCA) provides faithful replication of mammalian prions in vitro and has numerous applications in prion research. However, the low efficiency of conversion of PrPC into PrPSc in PMCA limits the applicability of PMCA for many uses including structural studies of infectious prions. It also implies that only a small sub-fraction of PrPC may be available for conversion. Here we show that the yield, rate, and robustness of prion conversion and the sensitivity of prion detection are significantly improved by a simple modification of the PMCA format. Conducting PMCA reactions in the presence of Teflon beads (PMCAb) increased the conversion of PrPC into PrPSc from ∼10% to up to 100%. In PMCAb, a single 24-hour round consistently amplified PrPSc by 600-700-fold. Furthermore, the sensitivity of prion detection in one round (24 hours) increased by 2-3 orders of magnitude. Using serial PMCAb, a 1012-fold dilution of scrapie brain material could be amplified to the level detectible by Western blotting in 3 rounds (72 hours). The improvements in amplification efficiency were observed for the commonly used hamster 263K strain and for the synthetic strain SSLOW that otherwise amplifies poorly in PMCA. The increase in the amplification efficiency did not come at the expense of prion replication specificity. The current study demonstrates that poor conversion efficiencies observed previously have not been due to the scarcity of a sub-fraction of PrPC susceptible to conversion nor due to limited concentrations of essential cellular cofactors required for conversion. The new PMCAb format offers immediate practical benefits and opens new avenues for developing fast ultrasensitive assays and for producing abundant quantities of PrPSc in vitro

    PAKs supplement improves immune status and body composition but not muscle strength in resistance trained individuals

    Get PDF
    Mixed formula supplements are very popular among recreational and professional weightlifters. They are usually known as PAKs and they are supposed to have a synergistic effect of their different nutrients. The purpose of this study was to determine the effects of chronic (4 weeks) PAKS supplementation in combination with strength training on body composition, immune status and performance measures in recreationally trained individuals with or without PAKs supplementation. Methods: Twelve male subjects (Placebo n = 6 and PAKs supplement n = 6) were recruited for this study. The body composition, one maximum strength repetition tests and immune status were assessed before and after 4 week supplementation. Our data showed that, 4 week PAK supplementation associated with strength exercise not was effective in change strength than compared with placebo group. However, we observed that, PAK supplement was able to improve immune status and reduced body composition when compared with placebo group. These results indicate that, a mixed formula supplement is able to improve immune status and body composition but not maximum strength in recreational strength trained subjects in a 4 weeks period

    De Novo Generation of Infectious Prions In Vitro Produces a New Disease Phenotype

    Get PDF
    Prions are the proteinaceous infectious agents responsible for Transmissible Spongiform Encephalopathies. Compelling evidence supports the hypothesis that prions are composed exclusively of a misfolded version of the prion protein (PrPSc) that replicates in the body in the absence of nucleic acids by inducing the misfolding of the cellular prion protein (PrPC). The most common form of human prion disease is sporadic, which appears to have its origin in a low frequency event of spontaneous misfolding to generate the first PrPSc particle that then propagates as in the infectious form of the disease. The main goal of this study was to mimic an early event in the etiology of sporadic disease by attempting de novo generation of infectious PrPSc in vitro. For this purpose we analyzed in detail the possibility of spontaneous generation of PrPSc by the protein misfolding cyclic amplification (PMCA) procedure. Under standard PMCA conditions, and taking precautions to avoid cross-contamination, de novo generation of PrPSc was never observed, supporting the use of the technology for diagnostic applications. However, we report that PMCA can be modified to generate PrPSc in the absence of pre-existing PrPSc in different animal species at a low and variable rate. De novo generated PrPSc was infectious when inoculated into wild type hamsters, producing a new disease phenotype with unique clinical, neuropathological and biochemical features. Our results represent additional evidence in support of the prion hypothesis and provide a simple model to study the mechanism of sporadic prion disease. The findings also suggest that prion diversity is not restricted to those currently known, and that likely new forms of infectious protein foldings may be produced, resulting in novel disease phenotypes

    Timed inhibition of CDC7 increases CRISPR-Cas9 mediated templated repair.

    Get PDF
    Repair of double strand DNA breaks (DSBs) can result in gene disruption or gene modification via homology directed repair (HDR) from donor DNA. Altering cellular responses to DSBs may rebalance editing outcomes towards HDR and away from other repair outcomes. Here, we utilize a pooled CRISPR screen to define host cell involvement in HDR between a Cas9 DSB and a plasmid double stranded donor DNA (dsDonor). We find that the Fanconi Anemia (FA) pathway is required for dsDonor HDR and that other genes act to repress HDR. Small molecule inhibition of one of these repressors, CDC7, by XL413 and other inhibitors increases the efficiency of HDR by up to 3.5 fold in many contexts, including primary T cells. XL413 stimulates HDR during a reversible slowing of S-phase that is unexplored for Cas9-induced HDR. We anticipate that XL413 and other such rationally developed inhibitors will be useful tools for gene modification

    May Measurement Month 2017: analysis of the blood pressure screening results in Argentina-Americas

    Get PDF
    Hypertension is a growing concern worldwide, causing over 10 million deaths each year. The prevalence of high blood pressure (BP) in Argentina is 36.3% and 38% of these are unaware of their disease. Half of the hypertensive patients are on pharmacological treatment and only a quarter of them are controlled. The International Society of Hypertension initiated the May Measurement Month (MMM) as a global campaign to raise awareness on high BP that may also serve as a temporary solution to the lack of global screening programs worldwide. A volunteer cross-sectional survey was carried out in May 2017 across 56 health centres. Blood pressure measurement, definition of hypertension and statistical analysis followed the MMM protocol. For this awareness campaign, the Argentine Society of Hypertension coined the slogan: 'Know and control your blood pressure'. A total of 32 346 individuals aged at least 18 years were screened during MMM17. After imputation, 16 263 (50.4%) were hypertensive. Of the 12 156 receiving antihypertensive medication 5400 (44.4%) still had uncontrolled BP. MMM17, called in our country 'Know and control your blood pressure', was the largest BP screening campaign done in Argentina. Almost 6 out of 10 hypertensive patients were either not on treatment or were not controlled to the BP goal. These results suggest that appropriate screening can help to identify a significant number of people with high BP

    In Vitro Amplification of Misfolded Prion Protein Using Lysate of Cultured Cells

    Get PDF
    Protein misfolding cyclic amplification (PMCA) recapitulates the prion protein (PrP) conversion process under cell-free conditions. PMCA was initially established with brain material and then with further simplified constituents such as partially purified and recombinant PrP. However, availability of brain material from some species or brain material from animals with certain mutations or polymorphisms within the PrP gene is often limited. Moreover, preparation of native PrP from mammalian cells and tissues, as well as recombinant PrP from bacterial cells, involves time-consuming purification steps. To establish a convenient and versatile PMCA procedure unrestricted to the availability of substrate sources, we attempted to conduct PMCA with the lysate of cells that express cellular PrP (PrPC). PrPSc was efficiently amplified with lysate of rabbit kidney epithelial RK13 cells stably transfected with the mouse or Syrian hamster PrP gene. Furthermore, PMCA was also successful with lysate of other established cell lines of neuronal or non-neuronal origins. Together with the data showing that the abundance of PrPC in cell lysate was a critical factor to drive efficient PrPSc amplification, our results demonstrate that cell lysate in which PrPC is present abundantly serves as an excellent substrate source for PMCA
    corecore