891 research outputs found

    Insulin response and changes in composition of non-esterified fatty acids in blood plasma of middle-aged men following isoenergetic fatty and carbohydrate breakfasts

    Get PDF
    It was previously shown that a high plasma concentration of non-esterified fatty acids (NEFA) persisted after a fatty breakfast, but not after an isoenergetic carbohydrate breakfast, adversely affecting glucose tolerance. The higher concentration after the fatty breakfast may in part have been a result of different mobilization rates of fatty acids. This factor can be investigated as NEFA mobilized from tissues are monounsaturated to a greater extent than those deposited from a typical meal. Twenty-four middle-aged healthy Caucasian men were given oral glucose tolerance tests (OGTT), and for 28 d isoenergetic breakfasts of similar fat composition but of low (L) or moderate (M) fat content. The composition of NEFA in fasting and postprandial plasma was determined on days 1 and 29. No significant treatment differences in fasting NEFA composition occurred on day 29. During the OGTT and 0-1 h following breakfast there was an increase in plasma long-chain saturated NEFA but a decrease in monounsaturated NEFA (mug/100 mug total NEFA; Pg/100 mug total NEFA; P<0.05), expressed as an increase in 18:1 and decreases in 16:0 and 17:0 in treatment M relative to treatment L (P<0.05). Serum insulin attained 35 and 65 mU/l in treatments M and L respectively during this period. Negative correlations were found between 16:0 in fasting plasma and both waist:hip circumference (P=0.0009) and insulin response curve area during OGTT (within treatment M, P=0.0001). It is concluded that a normal postprandial insulin response is associated with a rapid change in plasma saturated:monounsaturated NEFA. It is proposed that this change is the result of a variable suppression of fat mobilization, which may partly account for a large difference in postprandial total plasma NEFA between fatty and carbohydrate meals

    Diurnal trends in responses of blood plasma concentrations of glucose, insulin, and C-peptide following high- and low-fat meals and their relation to fat metabolism in healthy middle-aged volunteers

    Get PDF
    An experiment was conducted in twelve healthy middle-aged volunteers, six of each sex, with a mean BMI of 27 kg/m(2) to detect differences between morning and afternoon in postprandial blood glucose, insulin and C-peptide concentrations. These responses were measured following the consumption of isoenergetic meals that were high or low in fat content, at breakfast and at lunch. Over 4d each subject received the high-carbohydrate (L, 5.5 g mixed fat/meal) and moderately high-fat (M, 33 g mixed fat/meal) breakfasts and lunches, in three combinations (LL, MM, LM), or they fasted at breakfast time and received a moderately high-fat lunch (NM), in three Latin squares. Each evening a standard meal was given. Plasma glucose, insulin and C-peptide responses were greater following L than M meals and within both MM and LL treatments insulin and C-peptide responses were greater following breakfast than following lunch. The incremental C-peptide response to a fatty lunch following a fast at breakfast time (MM) was similar to that to a fatty breakfast, but the incremental insulin response for the same comparison was marginally lower at lunch (P=0.06). The relationship of C-peptide and insulin concentrations was assessed. Plasma glucose response to a fatty lunch was increased by a fatty breakfast. The relationships of these metabolic events with fat metabolism are discussed

    Effects of high- and low-fat meals on the diurnal response of plasma lipid metabolite concentrations in healthy middle-aged volunteers

    Get PDF
    Three experiments were conducted in healthy middle-aged volunteers (six males and six females in Expt 1, six males and two females in Expt 2 and twelve males in Expt 3) with a mean BMI of 27 kg/m(2) to determine whether there is a difference between morning and afternoon dietary fat clearance and utilization, and to determine in what way the fat and starch contents of the meal influence postprandial blood lipid metabolites over 4.5 h. Over 4 days in Expt 1 each subject received isoenergetic, high-carbohydrate (L, 5.5 g mixed fat/meal) and moderately high-fat (M, 33 g mixed fat/meal) breakfasts and lunches, in three combinations (LL, MM, LM), or they fasted at breakfast time and received a high fat lunch (MM) in a randomized and balanced arrangement. Each evening a standard meal was given. The following effects were significant (P < 0.05): plasma triacylglycerol (TAG) responses were greater following RI meals; plasma TAG concentrations were greater in the afternoon than in the morning, following two meats of the same composition, although the postprandial incremental response was less following lunch than following breakfast and peak responses were reached much earlier than after breakfast; a low-fat breakfast, or fasting at breakfast time, delayed the peak TAG response to a M lunch. The plasma concentrations of nonesterified fatty acids (NEFA) and of free glycerol were higher in the afternoon following M meals at breakfast and lunch, especially in males. This response was reduced, by the L breakfast preceding the M lunch. Two M meals in succession lowered plasma HDL-cholesterol concentration. In Expt 2 each subject received a very low-fat (VL) breakfast, followed by a lunch of the same composition. Each of these meals was followed, 110 min from the start of eating, by an infusion of Intralipid 10 % emulsion at the rate of 1 ml/kg body weight over 60 s. Clearance rates of Intralipid were faster in the afternoon than in the morning (P = 0.024). In Expt 3 twelve subjects were randomly allocated to either treatment MM or LM meal patterns, as given in Expt 1. These were given daily for a period of 17 d, during which the change in fasting plasma TAG concentration was similar in both treatments. On days 1, 16 and 17 responses were measured to the M lunch and to a glucose tolerance test (GTT), conducted 2 h 17 min after lunch. The post-lunch responses confirmed those found in Expt 1; but immediately following the glucose dose there was an abrupt increase in plasma TAG that was greater in treatment LM than in treatment MM (P = 0.025), whereas plasma NEFA concentration decreased rapidly in both treatments at that time (P = 0.00066)

    Effect of breakfast fat content on glucose tolerance and risk factors of atherosclerosis and thrombosis

    Get PDF
    Twenty-four middle-aged healthy men were given a low-fat high-carbohydrate (5.5 g fat; L), or a moderately-fatty, (25.7 g fat; M) breakfast of similar energy contents for 28 d. Other meals were under less control. An oral glucose tolerance test (OGTT) was given at 09.00 hours on day 1 before treatment allocation and at 13.30 hours on day 29. There were no significant treatment differences in fasting serum values, either on day 1 or at the termination of treatments on day 29. The following was observed on day 29: (1) the M breakfast led to higher OGTT C-peptide responses and higher areas under the curves (AUC) of OGTT serum glucose and insulin responses compared with the OGTT responses to the L breakfast (P < 0.05); (2) treatment M failed to prevent OGTT glycosuria, eliminated with treatment L; (3) serum non-esterified fatty acid (NEFA) AUC was 59% lower with treatment L than with treatment M, between 09.00 and 13.20 hours (P < 0.0001), and lower with treatment L than with treatment M during the OGTT (P = 0.005); (4) serum triacylglycerol (TAG) concentrations were similar for both treatments, especially during the morning, but their origins were different during the afternoon OGTT when the Svedberg flotation unit 20-400 lipid fraction was higher with treatment L than with treatment M (P = 0.016); plasma apolipoprotein B-48 level with treatment M was not significantly greater than that with treatment L (P = 0.086); (5) plasma tissue plasminogen-activator activity increased after breakfast with treatment L (P = 0.0008), but not. with treatment M (P = 0.80). Waist:hip circumference was positively correlated with serum insulin and glucose AUC and with fasting LDL-cholesterol, Waist:hip circumference and serum TAG and insulin AUC were correlated with factors of thrombus formation; and the OGTT NEFA and glucose AUC were correlated. A small difference in fat intake at breakfast has a large influence on circulating diurnal NEFA concentration, which it is concluded influences adversely glucose tolerance up to 6 h later

    Single Cell Analysis of Lymph Node Tissue from HIV-1 Infected Patients Reveals that the Majority of CD4<sup>+</sup> T-cells Contain One HIV-1 DNA Molecule

    Get PDF
    Genetic recombination contributes to the diversity of human immunodeficiency virus (HIV-1). Productive HIV-1 recombination is, however, dependent on both the number of HIV-1 genomes per infected cell and the genetic relationship between these viral genomes. A detailed analysis of the number of proviruses and their genetic relationship in infected cells isolated from peripheral blood and tissue compartments is therefore important for understanding HIV-1 recombination, genetic diversity and the dynamics of HIV-1 infection. To address these issues, we used a previously developed single-cell sequencing technique to quantify and genetically characterize individual HIV-1 DNA molecules from single cells in lymph node tissue and peripheral blood. Analysis of memory and naĆÆve CD4+ T cells from paired lymph node and peripheral blood samples from five untreated chronically infected patients revealed that the majority of these HIV-1-infected cells (>90%) contain only one copy of HIV-1 DNA, implying a limited potential for productive recombination in virus produced by these cells in these two compartments. Phylogenetic analysis revealed genetic similarity of HIV-1 DNA in memory and naĆÆve CD4+ T-cells from lymph node, peripheral blood and HIV-1 RNA from plasma, implying exchange of virus and/or infected cells between these compartments in untreated chronic infection

    The Nrf2 inhibitor brusatol is a potent antitumour agent in an orthotopic mouse model of colorectal cancer

    Get PDF
    Ā© Evans et al. Nrf2 is a transcription factor that regulates cellular stress response and irinotecan-metabolising pathways. Its aberrant activity has been reported in a number of cancers, although relatively few studies have explored a role for Nrf2 in colorectal cancer (CRC). This study assessed the expression of Nrf2 in patient CRC tissues and explored the effect of Nrf2 modulation alone, or in combination with irinotecan, in human (HCT116) and murine (CT26) cell lines in vitro and in an orthotopic syngeneic mouse model utilising bioluminescent imaging. Using a tissue microarray, Nrf2 was found to be overexpressed (p < 0.01) in primary CRC and metastatic tissue relative to normal colon, with a positive correlation between Nrf2 expression in matched primary and metastatic samples. In vitro experiments in CRC cell lines revealed that Nrf2 siRNA and brusatol, which is known to inhibit Nrf2, decreased viability and sensitised cells to irinotecan toxicity. Furthermore, brusatol effectively abrogated CRC tumour growth in subcutaneously and orthotopicallyallografted mice, resulting in an average 8-fold reduction in luminescence at the study end-point (p=0.02). Our results highlight Nrf2 as a promising drug target in the treatment of CRC

    Clinical and cost effectiveness of computer treatment for aphasia post stroke (Big CACTUS): study protocol for a randomised controlled trial

    Get PDF
    Background Aphasia affects the ability to speak, comprehend spoken language, read and write. One third of stroke survivors experience aphasia. Evidence suggests that aphasia can continue to improve after the first few months with intensive speech and language therapy, which is frequently beyond what resources allow. The development of computer software for language practice provides an opportunity for self-managed therapy. This pragmatic randomised controlled trial will investigate the clinical and cost effectiveness of a computerised approach to long-term aphasia therapy post stroke. Methods/Design A total of 285 adults with aphasia at least four months post stroke will be randomly allocated to either usual care, computerised intervention in addition to usual care or attention and activity control in addition to usual care. Those in the intervention group will receive six months of self-managed word finding practice on their home computer with monthly face-to-face support from a volunteer/assistant. Those in the attention control group will receive puzzle activities, supplemented by monthly telephone calls. Study delivery will be coordinated by 20 speech and language therapy departments across the United Kingdom. Outcome measures will be made at baseline, six, nine and 12 months after randomisation by blinded speech and language therapist assessors. Primary outcomes are the change in number of words (of personal relevance) named correctly at six months and improvement in functional conversation. Primary outcomes will be analysed using a Hochberg testing procedure. Significance will be declared if differences in both word retrieval and functional conversation at six months are significant at the 5% level, or if either comparison is significant at 2.5%. A cost utility analysis will be undertaken from the NHS and personal social service perspective. Differences between costs and quality-adjusted life years in the three groups will be described and the incremental cost effectiveness ratio will be calculated. Treatment fidelity will be monitored. Discussion This is the first fully powered trial of the clinical and cost effectiveness of computerised aphasia therapy. Specific challenges in designing the protocol are considered. Trial registration Registered with Current Controlled Trials ISRCTN68798818 webcite on 18 February 2014

    Rapid global ocean-atmosphere response to Southern Ocean freshening during the last glacial.

    Full text link
    Contrasting Greenland and Antarctic temperatures during the last glacial period (115,000 to 11,650 years ago) are thought to have been driven by imbalances in the rates of formation of North Atlantic and Antarctic Deep Water (the 'bipolar seesaw'). Here we exploit a bidecadally resolved 14C data set obtained from New Zealand kauri (Agathis australis) to undertake high-precision alignment of key climate data sets spanning iceberg-rafted debris event Heinrich 3 and Greenland Interstadial (GI) 5.1 in the North Atlantic (~30,400 to 28,400 years ago). We observe no divergence between the kauri and Atlantic marine sediment 14C data sets, implying limited changes in deep water formation. However, a Southern Ocean (Atlantic-sector) iceberg rafted debris event appears to have occurred synchronously with GI-5.1 warming and decreased precipitation over the western equatorial Pacific and Atlantic. An ensemble of transient meltwater simulations shows that Antarctic-sourced salinity anomalies can generate climate changes that are propagated globally via an atmospheric Rossby wave train.A challenge for testing mechanisms of past climate change is the precise correlation of palaeoclimate records. Here, through climate modelling and the alignment of terrestrial, ice and marine 14C and 10Be records, the authors show that Southern Ocean freshwater hosing can trigger global change

    DNA Suspension Arrays: Silencing Discrete Artifacts for High-Sensitivity Applications

    Get PDF
    Detection of low frequency single nucleotide polymorphisms (SNPs) has important implications in early screening for tumorgenesis, genetic disorders and pathogen drug resistance. Nucleic acid arrays are a powerful tool for genome-scale SNP analysis, but detection of low-frequency SNPs in a mixed population on an array is problematic. We demonstrate a model assay for HIV-1 drug resistance mutations, wherein ligase discrimination products are collected on a suspension array. In developing this system, we discovered that signal from multiple polymorphisms was obscured by two discrete hybridization artifacts. Specifically: 1) tethering of unligated probes on the template DNA elicited false signal and 2) unpredictable probe secondary structures impaired probe capture and suppressed legitimate signal from the array. Two sets of oligonucleotides were used to disrupt these structures; one to displace unligated reporter labels from the bead-bound species and another to occupy sequences which interfered with array hybridization. This artifact silencing system resulted in a mean 21-fold increased sensitivity for 29 minority variants of 17 codons in our model assay for mutations most commonly associated with HIV-1 drug resistance. Furthermore, since the artifacts we characterized are not unique to our system, their specific inhibition might improve the quality of data from solid-state microarrays as well as from the growing number of multiple analyte suspension arrays relying on sequence-specific nucleic acid target capture

    Genetic risk factors for ischaemic stroke and its subtypes (the METASTROKE Collaboration): a meta-analysis of genome-wide association studies

    Get PDF
    &lt;p&gt;Background - Various genome-wide association studies (GWAS) have been done in ischaemic stroke, identifying a few loci associated with the disease, but sample sizes have been 3500 cases or less. We established the METASTROKE collaboration with the aim of validating associations from previous GWAS and identifying novel genetic associations through meta-analysis of GWAS datasets for ischaemic stroke and its subtypes.&lt;/p&gt; &lt;p&gt;Methods - We meta-analysed data from 15 ischaemic stroke cohorts with a total of 12ā€ˆ389 individuals with ischaemic stroke and 62ā€ˆ004 controls, all of European ancestry. For the associations reaching genome-wide significance in METASTROKE, we did a further analysis, conditioning on the lead single nucleotide polymorphism in every associated region. Replication of novel suggestive signals was done in 13ā€ˆ347 cases and 29ā€ˆ083 controls.&lt;/p&gt; &lt;p&gt;Findings - We verified previous associations for cardioembolic stroke near PITX2 (p=2Ā·8Ɨ10āˆ’16) and ZFHX3 (p=2Ā·28Ɨ10āˆ’8), and for large-vessel stroke at a 9p21 locus (p=3Ā·32Ɨ10āˆ’5) and HDAC9 (p=2Ā·03Ɨ10āˆ’12). Additionally, we verified that all associations were subtype specific. Conditional analysis in the three regions for which the associations reached genome-wide significance (PITX2, ZFHX3, and HDAC9) indicated that all the signal in each region could be attributed to one risk haplotype. We also identified 12 potentially novel loci at p&#60;5Ɨ10āˆ’6. However, we were unable to replicate any of these novel associations in the replication cohort.&lt;/p&gt; &lt;p&gt;Interpretation - Our results show that, although genetic variants can be detected in patients with ischaemic stroke when compared with controls, all associations we were able to confirm are specific to a stroke subtype. This finding has two implications. First, to maximise success of genetic studies in ischaemic stroke, detailed stroke subtyping is required. Second, different genetic pathophysiological mechanisms seem to be associated with different stroke subtypes.&lt;/p&gt
    • ā€¦
    corecore