147 research outputs found

    Aquatic macroinvertebrate responses to native and non-native predators

    Get PDF
    Non-native species can profoundly affect native ecosystems through trophic interactions with native species. Native prey may respond differently to non-native versus native predators since they lack prior experience. Here we investigate antipredator responses of two common freshwater macroinvertebrates, Gammarus pulex and Potamopyrgus jenkinsi, to olfactory cues from three predators; sympatric native fish (Gasterosteus aculeatus), sympatric native crayfish (Austropotamobius pallipes), and novel invasive crayfish (Pacifastacus leniusculus). G. pulex responded differently to fish and crayfish; showing enhanced locomotion in response to fish, but a preference for the dark over the light in response to the crayfish. P. jenkinsi showed increased vertical migration in response to all three predator cues relative to controls. These different responses to fish and crayfish are hypothesised to reflect the predators’ differing predation types; benthic for crayfish and pelagic for fish. However, we found no difference in response to native versus invasive crayfish, indicating that prey naiveté is unlikely to drive the impacts of invasive crayfish. The Predator Recognition Continuum Hypothesis proposes that benefits of generalisable predator recognition outweigh costs when predators are diverse. Generalised responses of prey as observed here will be adaptive in the presence of an invader, and may reduce novel predators’ potential impacts

    What evidence exists on ecotechnologies for recycling carbon and nutrients from domestic wastewater? a systematic map

    Get PDF
    Abstract: Background: Eutrophication of the Baltic Sea, and many other water bodies, is partly the result of point-source emissions of nutrients and carbon from wastewater. At the same time, nitrogen and phosphorus planetary boundaries have been breached. There is a need for more efficient resource management, including the recovery and reuse of nutrients and carbon in waste. The aim of this paper is to collate evidence on ecotechnologies intended for use in the wastewater sector globally to facilitate the recovery or reuse of carbon and/or nutrients. Methods: Searches were performed on literature published between 2013 and 2017 and in 5 bibliographic databases, 1 search engine, and 38 specialist websites. Database searches were performed in English. Searches in specialist websites were also performed in Finnish, Polish and Swedish. There was no geographical limitation. Screening was conducted at title and abstract level, and on full texts. Apart from bibliographical information, we extracted information on ecotechnology type, intervention, details of the recovery or reuse, the type of wastewater stream to which the ecotechnology is applied, the study location, type and design. Prior to screening and coding, we conducted consistency checks amongst reviewers. We generated a searchable database of coded studies. Findings were synthesised narratively and visualised in a geographical information system (i.e. an evidence atlas). We identified a series of knowledge gaps and clusters that warrant further research. Results: The search resulted in 4024 records, out of which 413 articles were retained after the screening process. In addition, 35 pre-screened studies from the specialist website searches were added. Together, these 448 articles contained 474 individual studies of 28 types of ecotechnologies. A combination of ecotechnologies (16.7%), followed by microalgae cultivation (14.1%) were the most frequent ecotechnologies in the evidence base. Ecotechnologies for recovery composed 72.6% of the evidence base. The most common wastewater streams for recovery were mixed wastewater and sludge (73.8%). There was a relative lack of studies on recovery from source-separated wastewater. The most common type of recovery was energy (27.3%), followed by simultaneous recovery of nitrogen and phosphorus (22.1%). Reuse of recovered substances was described in 22.8% of the studies. The most common type of reuse was of nitrogen and phosphorus (57.4%), followed by joint reuse of organic carbon, nitrogen and phosphorus (35.2%). Reuse ecotechnologies were mostly focused on the use of wastewater for irrigation or reuse of biosolids, and not on the nutrients that had been extracted through e.g. precipitation of struvite. In 22 studies both recovery and reuse were described. In total, 60 different study countries were reported in the evidence base, and the most common study location was China

    The role of Google Scholar in evidence reviews and its applicability to grey literature searching

    Get PDF
    Google Scholar (GS), a commonly used web-based academic search engine, catalogues between 2 and 100 million records of both academic and grey literature (articles not formally published by commercial academic publishers). Google Scholar collates results from across the internet and is free to use. As a result it has received considerable attention as a method for searching for literature, particularly in searches for grey literature, as required by systematic reviews. The reliance on GS as a standalone resource has been greatly debated, however, and its efficacy in grey literature searching has not yet been investigated. Using systematic review case studies from environmental science, we investigated the utility of GS in systematic reviews and in searches for grey literature. Our findings show that GS results contain moderate amounts of grey literature, with the majority found on average at page 80. We also found that, when searched for specifically, the majority of literature identified using Web of Science was also found using GS. However, our findings showed moderate/poor overlap in results when similar search strings were used in Web of Science and GS (10–67%), and that GS missed some important literature in five of six case studies. Furthermore, a general GS search failed to find any grey literature from a case study that involved manual searching of organisations’ websites. If used in systematic reviews for grey literature, we recommend that searches of article titles focus on the first 200 to 300 results. We conclude that whilst Google Scholar can find much grey literature and specific, known studies, it should not be used alone for systematic review searches. Rather, it forms a powerful addition to other traditional search methods. In addition, we advocate the use of tools to transparently document and catalogue GS search results to maintain high levels of transparency and the ability to be updated, critical to systematic reviews

    The need for speed in a crisis discipline: Perspectives on peer-review duration and implications for conservation science

    Get PDF
    Scholarly peer review relies on rigorous yet fair assessments of articles by qualified referees in a timely manner. We considered the extent to which a prolonged peer-review process can delay the dissemination of results in a conservation context by combining insight from a survey with our own perspectives. A survey of authors who published peer-reviewed articles in biodiversity and conservation in 2012 and 2013 yielded 461 responses from participants in 119 countries. Approximately 44% of respondents thought that slow review times might hamper conservation, while only ~5% provided specific examples of how slow reviews had actually impeded conservation actions or policy formation. When queried about the value of expediting the review process for studies of high policy or conservation relevance, ca. 1/3 of respondents thought it was a worthwhile idea in principle, though mechanics of implementing such practices are unclear. Author self-identification of potentially important papers could lead to requesting a rapid review provided that a paper meets certain criteria-an approach already used by some generalist journals. Given the urgency of many conservation-oriented initiatives, we encourage the entire editor - ial team (staff, editors, referees, authors) to make a concerted effort towards improving the speed of the peer-review process while maintaining quality. Such efforts would reflect the notion that timeliness is a key component of scientific relevance to practitioners and policy makers in a crisis discipline. We conclude that there is a 'need for speed' and advocate that rapid, rigorous and thorough peer review can be accomplished and can provide collective benefits to the scientific community and global biodiversity

    Mapping global research on climate and health using machine learning (a systematic evidence map)

    Get PDF
    Climate change is already affecting health in populations around the world, threatening to undermine the past 50 years of global gains in public health. Health is not only affected by climate change via many causal pathways, but also by the emissions that drive climate change and their co-pollutants. Yet there has been relatively limited synthesis of key insights and trends at a global scale across fragmented disciplines. Compounding this, an exponentially increasing literature means that conventional evidence synthesis methods are no longer sufficient or feasible. Here, we outline a protocol using machine learning approaches to systematically synthesize global evidence on the relationship between climate change, climate variability, and weather (CCVW) and human health. We will use supervised machine learning to screen over 300,000 scientific articles, combining terms related to CCVW and human health. Our inclusion criteria comprise articles published between 2013 and 2020 that focus on empirical assessment of: CCVW impacts on human health or health-related outcomes or health systems; relate to the health impacts of mitigation strategies; or focus on adaptation strategies to the health impacts of climate change. We will use supervised machine learning (topic modeling) to categorize included articles as relevant to impacts, mitigation, and/or adaptation, and extract geographical location of studies. Unsupervised machine learning using topic modeling will be used to identify and map key topics in the literature on climate and health, with outputs including evidence heat maps, geographic maps, and narrative synthesis of trends in climate-health publishing. To our knowledge, this will represent the first comprehensive, semi-automated, systematic evidence synthesis of the scientific literature on climate and health

    Spatial and temporal scales of coral reef fish ecological research and management: a systematic map protocol

    Get PDF
    This is the final version. Available on open access from BMC via the DOI in this recordBackground Coral reefs are rapidly changing in response to local and global stressors. Research to better understand and inform the management of these stressors is burgeoning. However, in situ studies of coral reef ecology are constrained by complex logistics and limited resources. Many reef studies are also hampered by the scale-dependent nature of ecological patterns, and inferences made on causal relationships within coral reef systems are limited by the scales of observation. This is because most socio-ecological studies are conducted at scales relevant to the phenomenon of interest. However, management often occurs across a significantly broader, often geopolitical, range of scales. While there is a critical need for incisive coral reef management actions at relevant spatial and temporal scales, it remains unclear to what extent the scales of empirical study overlap with the scales at which management inferences and recommendations are made. This systematic map protocol will evaluate this potential scale mismatch with the goal of raising awareness about the significance of effectively addressing and reporting the scales at which researchers collect data and make assumptions. Methods We will use the Collaboration for Environmental Evidence (CEE) systematic mapping guidelines to identify relevant studies using a framework-based synthesis to summarise the spatial and temporal scales of coral reef fish ecology research and the scales at which management inferences or recommendations are made. Using tested predefined terms, we will search for relevant published academic and grey literature, including bibliographic databases, web-based search engines, and organisational websites. Inclusion criteria for the evidence map are empirical studies that focus on coral reef fish ecological organisation and processes, those informing management interventions and policy decisions, and management documents that cite coral reef research for management decision-making. Study results will be displayed graphically using data matrices and heat maps. This is the first attempt to systematically assess and compare the scales of socio-ecological research conducted on coral reef systems with their management.NOAA Coral Reef Conservation Progra
    • …
    corecore