22 research outputs found

    Use of RNAlater in fluorescence-activated cell sorting (FACS) reduces the fluorescence from GFP but not from DsRed

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Flow cytometry utilizes signals from fluorescent markers to separate targeted cell populations for gene expression studies. However, the stress of the FACS process could change normal gene expression profiles. RNAlater could be used to stop such changes in original gene expression profiles through its ability to denature RNase and other proteins. The normal conformational structure of fluorescent proteins must be maintained in order to fluoresce. Whether or not RNAlater would affect signals from different types of intrinsic fluorescent proteins is crucial to its use in flow cytometry; this question has not been investigated in detail.</p> <p>Findings</p> <p>To address this question, we analyzed the effect of RNAlater on fluorescence intensity of GFP, YFP, DsRed and small fluorescent molecules attached to secondary antibodies (Cy2 and Texas-Red) when used in flow cytometry. FACS results were confirmed with fluorescence microscopy. Our results showed that exposure of YFP and GFP containing cells to RNAlater reduces the intensity of their fluorescence to such an extent that separation of such labeled cells is difficult if not impossible. In contrast, signals from DsRed2, Cy2 and Texas-Red were not affected by RNAlater treatment. In addition, the background fluorescence and clumping of dissociated cells are altered by RNAlater treatment.</p> <p>Conclusions</p> <p>When considering gene expression studies using cell sorting with RNAlater, DsRed is the fluorescent protein of choice while GFP/YFP have severe limitations because of their reduced fluorescence. It is necessary to examine the effects of RNAlater on signals from fluorescent markers and the physical properties (e.g., clumping) of the cells before considering its use in cell sorting.</p

    Genetic Background Strongly Modifies the Severity of Symptoms of Hirschsprung Disease, but Not Hearing Loss in Rats Carrying Ednrbsl Mutations

    Get PDF
    Hirschsprung disease (HSCR) is thought to result as a consequence of multiple gene interactions that modulate the ability of enteric neural crest cells to populate the developing gut. However, it remains unknown whether the single complete deletion of important HSCR-associated genes is sufficient to result in HSCR disease. In this study, we found that the null mutation of the Ednrb gene, thought indispensable for enteric neuron development, is insufficient to result in HSCR disease when bred onto a different genetic background in rats carrying Ednrbsl mutations. Moreover, we found that this mutation results in serious congenital sensorineural deafness, and these strains may be used as ideal models of Waardenburg Syndrome Type 4 (WS4). Furthermore, we evaluated how the same changed genetic background modifies three features of WS4 syndrome, aganglionosis, hearing loss, and pigment disorder in these congenic strains. We found that the same genetic background markedly changed the aganglionosis, but resulted in only slight changes to hearing loss and pigment disorder. This provided the important evidence, in support of previous studies, that different lineages of neural crest-derived cells migrating along with various pathways are regulated by different signal molecules. This study will help us to better understand complicated diseases such as HSCR and WS4 syndrome

    Zeb2 is essential for Schwann cell differentiation, myelination and nerve repair

    Get PDF
    Schwann cell development and peripheral nerve myelination require the serial expression of transcriptional activators, such as Sox10, Oct6 (also called Scip or Pou3f1) and Krox20 (also called Egr2). Here we show that transcriptional repression, mediated by the zinc-finger protein Zeb2 (also known as Sip1), is essential for differentiation and myelination. Mice lacking Zeb2 in Schwann cells develop a severe peripheral neuropathy, caused by failure of axonal sorting and virtual absence of myelin membranes. Zeb2-deficient Schwann cells continuously express repressors of lineage progression. Moreover, genes for negative regulators of maturation such as Sox2 and Ednrb emerge as Zeb2 target genes, supporting its function as an inhibitor of inhibitors in myelination control. When Zeb2 is deleted in adult mice, Schwann cells readily dedifferentiate following peripheral nerve injury and become repair cells. However, nerve regeneration and remyelination are both perturbed, demonstrating that Zeb2, although undetectable in adult Schwann cells, has a latent function throughout life

    Colonizing while migrating: How do individual enteric neural crest cells behave?

    Get PDF
    Background Directed cell migration is essential for normal development. In most of the migratory cell populations that have been analysed in detail to date, all of the cells migrate as a collective from one location to another. However, there are also migratory cell populations that must populate the areas through which they migrate, and thus some cells get left behind while others advance. Very little is known about how individual cells behave to achieve concomitant directional migration and population of the migratory route. We examined the behavior of enteric neural crest-derived cells (ENCCs), which must both advance caudally to reach the anal end and populate each gut region. Results The behaviour of individual ENCCs was examined using live imaging and mice in which ENCCs express a photoconvertible protein. We show that individual ENCCs exhibit very variable directionalities and speed; as the migratory wavefront of ENCCs advances caudally, each gut region is populated primarily by some ENCCs migrating non-directionally. After populating each region, ENCCs remain migratory for at least 24 hours. Endothelin receptor type B (EDNRB) signaling is known to be essential for the normal advance of the ENCC population. We now show that perturbation of EDNRB principally affects individual ENCC speed rather than directionality. The trajectories of solitary ENCCs, which occur transiently at the wavefront, were consistent with an unbiased random walk and so cell-cell contact is essential for directional migration. ENCCs migrate in close association with neurites. We showed that although ENCCs often use neurites as substrates, ENCCs lead the way, neurites are not required for chain formation and neurite growth is more directional than the migration of ENCCs as a whole. Conclusions Each gut region is initially populated by sub-populations of ENCCs migrating non-directionally, rather than stopping. This might provide a mechanism for ensuring a uniform density of ENCCs along the growing gut
    corecore