15 research outputs found

    A Finite Element Model Simulation of Surface EMG Signals Based on Muscle Tissue Dielectric Properties and Electrodes Configuration

    Get PDF
    A three layer Finite Element Model of skin, fat and skeletal muscle tissue is implemented. The model aims to study the influence of the dielectric properties of the muscle on electromyography signals. The paper focuses on the electrode configuration and its effect on the muscle myoelectric activity detected at the surface. Unlike previous models, the source signal is be generated from recorded intramuscular myoelectric measurements. The finite element model is compared to experimental data and shows a strong correlation in the frequency spectra (r=0.7276) for monopolar recordings but deviates from experimental observations for a bipolar arrangement. Modelling inaccuracies from the input data and experimental noise related to the bipolar modelling are explored

    Spontaneous Gender Categorization in Masking and Priming Studies: Key for Distinguishing Jane from John Doe but Not Madonna from Sinatra

    Get PDF
    Facial recognition is key to social interaction, however with unfamiliar faces only generic information, in the form of facial stereotypes such as gender and age is available. Therefore is generic information more prominent in unfamiliar versus familiar face processing? In order to address the question we tapped into two relatively disparate stages of face processing. At the early stages of encoding, we employed perceptual masking to reveal that only perception of unfamiliar face targets is affected by the gender of the facial masks. At the semantic end; using a priming paradigm, we found that while to-be-ignored unfamiliar faces prime lexical decisions to gender congruent stereotypic words, familiar faces do not. Our findings indicate that gender is a more salient dimension in unfamiliar relative to familiar face processing, both in early perceptual stages as well as later semantic stages of person construal

    How well do computer-generated faces tap face expertise?

    Get PDF
    The use of computer-generated (CG) stimuli in face processing research is proliferating due to the ease with which faces can be generated, standardised and manipulated. However there has been surprisingly little research into whether CG faces are processed in the same way as photographs of real faces. The present study assessed how well CG faces tap face identity expertise by investigating whether two indicators of face expertise are reduced for CG faces when compared to face photographs. These indicators were accuracy for identification of own-race faces and the other-race effect (ORE)-the well-established finding that own-race faces are recognised more accurately than other-race faces. In Experiment 1 Caucasian and Asian participants completed a recognition memory task for own- and other-race real and CG faces. Overall accuracy for own-race faces was dramatically reduced for CG compared to real faces and the ORE was significantly and substantially attenuated for CG faces. Experiment 2 investigated perceptual discrimination for own- and other-race real and CG faces with Caucasian and Asian participants. Here again, accuracy for own-race faces was significantly reduced for CG compared to real faces. However the ORE was not affected by format. Together these results signal that CG faces of the type tested here do not fully tap face expertise. Technological advancement may, in the future, produce CG faces that are equivalent to real photographs. Until then caution is advised when interpreting results obtained using CG faces

    Processing of spatial-frequency altered faces in schizophrenia: Effects of illness phase and duration

    Get PDF
    Low spatial frequency (SF) processing has been shown to be impaired in people with schizophrenia, but it is not clear how this varies with clinical state or illness chronicity. We compared schizophrenia patients (SCZ, n534), first episode psychosis patients (FEP, n522), and healthy controls (CON, n535) on a gender/facial discrimination task. Images were either unaltered (broadband spatial frequency, BSF), or had high or low SF information removed (LSF and HSF conditions, respectively). The task was performed at hospital admission and discharge for patients, and at corresponding time points for controls. Groups were matched on visual acuity. At admission, compared to their BSF performance, each group was significantly worse with low SF stimuli, and most impaired with high SF stimuli. The level of impairment at each SF did not depend on group. At discharge, the SCZ group performed more poorly in the LSF condition than the other groups, and showed the greatest degree of performance decline collapsed over HSF and LSF conditions, although the latter finding was not significant when controlling for visual acuity. Performance did not change significantly over time for any group. HSF processing was strongly related to visual acuity at both time points for all groups. We conclude the following: 1) SF processing abilities in schizophrenia are relatively stable across clinical state; 2) face processing abnormalities in SCZ are not secondary to problems processing specific SFs, but are due to other known difficulties constructing visual representations from degraded information; and 3) the relationship between HSF processing and visual acuity, along with known SCZ- and medication-related acuity reductions, and the elimination of a SCZ-related impairment after controlling for visual acuity in this study, all raise the possibility that some prior findings of impaired perception in SCZ may be secondary to acuity reductions

    Face-specific capacity limits under perceptual load do not depend on holistic processing

    Get PDF
    Previous observations that face recognition may proceed automatically, without drawing on attentional resources, have been challenged by recent demonstrations that only a few faces can be processed at one time. However, a question remains about the nature of the stimulus properties that underlie face-specific capacity limits. Two experiments showed that speeded categorization of a famous face (such as a politician or pop star) is facilitated when it is congruent with a peripheral distractor face. This congruency effect is eliminated if the visual search is loaded with more than one face, unlike previous demonstrations of speeded classification using semantic information. Importantly, congruency effects are also eliminated when the search task is loaded with nontarget faces that are shown in an inverted orientation. These results indicate that face-specific capacity limits are not determined by the configural (“holistic”) properties of face recognition

    The relative salience of facial features when differentiating faces based on an interference paradigm

    Get PDF
    Research on face recognition and social judgment usually addresses the manipulation of facial features (eyes, nose, mouth, etc.). Using a procedure based on a Stroop-like task, Montepare and Opeyo (J Nonverbal Behav 26(1):43-59, 2002) established a hierarchy of the relative salience of cues based on facial attributes when differentiating faces. Using the same perceptual interference task, we established a hierarchy of facial features. Twenty-three participants (13 men and 10 women) volunteered for the experiment to compare pairs of frontal faces. The participants had to judge if the eyes, nose, mouth and chin in the pair of images were the same or different. The factors manipulated were the target-distractive factor (4 face components 9 3 distractive factors), interference (absent vs. present) and correct answer (the same vs. different). The analysis of reaction times and errors showed that the eyes and mouth were processed before the chin and nose, thus highlighting the critical importance of the eyes and mouth, as shown by previous research

    A novel polar-based human face recognition computational model

    Get PDF
    Motivated by a recently proposed biologically inspired face recognition approach, we investigated the relation between human behavior and a computational model based on Fourier-Bessel (FB) spatial patterns. We measured human recognition performance of FB filtered face images using an 8-alternative forced-choice method. Test stimuli were generated by converting the images from the spatial to the FB domain, filtering the resulting coefficients with a band-pass filter, and finally taking the inverse FB transformation of the filtered coefficients. The performance of the computational models was tested using a simulation of the psychophysical experiment. In the FB model, face images were first filtered by simulated V1- type neurons and later analyzed globally for their content of FB components. In general, there was a higher human contrast sensitivity to radially than to angularly filtered images, but both functions peaked at the 11.3-16 frequency interval. The FB-based model presented similar behavior with regard to peak position and relative sensitivity, but had a wider frequency band width and a narrower response range. The response pattern of two alternative models, based on local FB analysis and on raw luminance, strongly diverged from the human behavior patterns. These results suggest that human performance can be constrained by the type of information conveyed by polar patterns, and consequently that humans might use FB-like spatial patterns in face processing
    corecore