1,231 research outputs found

    Model analysis of the world data on the pion transition form factor

    Get PDF
    We discuss the impact of recent Belle data on our description of the pion transition form factor based on the assumption that a perturbative formalism and a nonperturbative one can be matched in a physically acceptable manner at a certain hadronic scale Q0Q_{0}. We discuss the implications of the different parameters of the model in comparing with world data and conclude that within experimental errors our description remains valid. Thus we can assert that the low Q2Q^2 nonperturbative description together with an additional 1/Q21/Q^2 term at the matching scale have a strong influence on the Q2Q^2 behavior up to very high values of Q2Q^2 .Comment: 6 pages and 3 figures. Contains a comparison with other models and additional reference

    A comparative DFT study of electronic properties of 2H-, 4H- and 6H-SiC(0001) and SiC(000-1) clean surfaces: Significance of the surface Stark effect

    Full text link
    Electric field, uniform within the slab, emerging due to Fermi level pinning at its both sides is analyzed using DFT simulations of the SiC surface slabs of different thickness. It is shown that for thicker slab the field is nonuniform and this fact is related to the surface state charge. Using the electron density and potential profiles it is proved that for high precision simulations it is necessary to take into account enough number of the Si-C layers. We show that using 12 diatomic layers leads to satisfactory results. It is also demonstrated that the change of the opposite side slab termination, both by different type of atoms or by their location, can be used to adjust electric field within the slab, creating a tool for simulation of surface properties, depending on the doping in the bulk of semiconductor. Using these simulations it was found that, depending on the electric field, the energy of the surface states changes in a different way than energy of the bulk states. This criterion can be used to distinguish Shockley and Tamm surface states. The electronic properties, i.e. energy and type of surface states of the three clean surfaces: 2H-, 4H-, 6H-SiC(0001), and SiC(0001ˉ000 \bar{1}) are analyzed and compared using field dependent DFT simulations.Comment: 18 pages, 10 figures, 4 table

    No-core shell model for 48-Ca, 48-Sc and 48-Ti

    Full text link
    We report the first no-core shell model results for 48Ca^{48}Ca, 48Sc^{48}Sc and 48Ti^{48}Ti with derived and modified two-body Hamiltonians. We use an oscillator basis with a limited Ω\hbar\Omega range around 45/A1/325/A2/3=10.5MeV45/A^{1/3}-25/A^{2/3} = 10.5 MeV and a limited model space up to 1Ω1\hbar\Omega. No single-particle energies are used. We find that the charge dependence of the bulk binding energy of eight A=48 nuclei is reasonably described with an effective Hamiltonian derived from the CD-Bonn interaction while there is an overall underbinding by about 0.4 MeV/nucleon. However, the resulting spectra exhibit deficiencies that are anticipated due to: (1) basis space limitations and/or the absence of effective many-body interactions; and, (2) the absence of genuine three-nucleon interactions. We then introduce additive isospin-dependent central terms plus a tensor force to our Hamiltonian and achieve accurate binding energies and reasonable spectra for all three nuclei. The resulting no-core shell model opens a path for applications to the double-beta (ββ\beta\beta) decay process.Comment: Revised content and added reference

    Unraveling the extracellular matrix-tumor cell interactions to aid better targeted therapies for neuroblastoma

    Get PDF
    Treatment in children with high-risk neuroblastoma remains largely unsuccessful due to the development of metastases and drug resistance. The biological complexity of these tumors and their microenvironment represent one of the many challenges to face. Matrix glycoproteins such as vitronectin act as bridge elements between extracellular matrix and tumor cells and can promote tumor cell spreading. In this study, we established through a clinical cohort and preclinical models that the interaction of vitronectin and its ligands, such as αv integrins, are related to the stiffness of the extracellular matrix in high-risk neuroblastoma. These marked alterations found in the matrix led us to specifically target tumor cells within these altered matrices by employing nanomedicine and combination therapy. Loading the conventional cytotoxic drug etoposide into nanoparticles significantly increased its efficacy in neuroblastoma cells. We noted high synergy between etoposide and cilengitide, a high-affinity cyclic pentapeptide αv integrin antagonist. The results of this study highlight the need to characterize cell-extracellular matrix interactions, to improve patient care in high-risk neuroblastoma

    Dual-stage sugar substitution in strawberries with a \u3ci\u3eStevia\u3c/i\u3e-based sweetener

    Get PDF
    The present study introduces and analyzes a new process denominated dual-stage sugar substitution (D3S). This process aims to induce sugar substitution in strawberries. In a first stage, high-calorie sugars (sucrose, fructose and glucose) are partially removed from the fruit samples and in a second stage, low-calorie sugar (stevioside and rebaudioside) is incorporated to the fruit to maintain its sweetness. The process was evaluated by studying the use of ultrasound application in one or both stages of the D3S process. Best performance of the process was obtained by subjecting the fruit samples to ultrasound in the sugar removal stage followed by immersion of the samples in Stevia-based solution without application of ultrasound in the sweetener incorporation stage. These operating conditions result in the highest sugar removal during the first stage, highest water loss during the process and highest sweetener incorporation during the second stage of the D3S process. The work described in this research is relevant to the production of dried fruits. A process to produce low-calorie dried fruit is presented. The process removes high-calorie sugars from the fruit and replaces it with a natural low-calorie sugar restoring the sweetness of the fruit

    A (p/E) Calculation of Strong Pionic Decays of Baryons

    Get PDF
    Strong pionic decays of baryons are studied in a non-relativistic quark model framework via a convergent (p/E) expansion of the transition operator. Results are compared to the ones obtained within a more conventional (p/m) expansion.Comment: 16 pages, LaTeX, using amssymb.st

    Phase Diagram for Charge Density Waves in a Magnetic Field

    Get PDF
    The influence of an external magnetic field on a quasi one-dimensional system with a charge density wave (CDW) instability is treated within the random phase approximation which includes both CDW and spin density wave correlations. We show that the CDW is sensitive to both orbital and Pauli effects of the field. In the case of perfect nesting, the critical temperature decreases monotonously with the field, and the wave vector of the instability starts to shift above some critical value of magnetic field. Depending on the ratio between the spin and charge coupling constants and on the direction of the applied magnetic field, the wave vector shift is either parallel (CDWxCDW_x order) or perpendicular (CDWyCDW_y order) to the most conducting direction. The CDWxCDW_x order is a field dependent linear combination of the charge and spin density waves and is sensible only to the Pauli effect. The wave vector shift in CDWyCDW_y depends on the interchain coupling, but the critical temperature does not. This order is affected by the confinement of the electronic orbits. By increasing the relative strength of the orbital effect with respect to the Pauli effect, one can destroy the CDWyCDW_y, establishing either a CDWxCDW_x, or a CDW0CDW_0 (corresponding to perfect nesting wave vector). We also show that by increasing the imperfect nesting parameter, one passes from the regime where the critical temperature decreases with the field to the regime where it is initially enhanced by the orbital effect and eventually suppressed by the Pauli effect. For a bad nesting, the quantized phases of the field-induced CDW appear.Comment: 30 pages (LaTeX) + 15 figure

    Math Achievement Trajectories Among Black Male Students in the Elementary- and Middle-School Years

    Get PDF
    In this article, we analyze the variation in math achievement trajectories of Black male students to understand the different ways these students successfully or unsuccessfully navigate schools and the school characteristics that are associated with their trajectories. Using longitudinal student-level data from a large urban US city (n = 7,039), we analyze Black male students from one cohort to identify trajectories. We find a lack of growth in standardized math scores, suggesting that, on average, math proficiency among Black male students in our sample is declining over time. We found that the 4th-grade standardized math scores of subsidized-lunch students were somewhat lower than those of nonsubsidized students and those of retained students were substantially lower than their counterparts. The average math score of a Black male student's cohort appears to be the only variable amenable to policy manipulation that has a sizeable association with the growth of their standardized math scores, suggesting that putting Black male students in more challenging learning environments may be the best way to increase math proficiency over time. By themselves, other policy decisions (reducing student mobility, teacher turnover, or special education classification; increasing attendance or spending on after-school programming; or hiring more qualified or experienced teachers) all appear to have no or negligible associations with growth in math scores

    Composition, structure and stability of RuO_2(110) as a function of oxygen pressure

    Full text link
    Using density-functional theory (DFT) we calculate the Gibbs free energy to determine the lowest-energy structure of a RuO_2(110) surface in thermodynamic equilibrium with an oxygen-rich environment. The traditionally assumed stoichiometric termination is only found to be favorable at low oxygen chemical potentials, i.e. low pressures and/or high temperatures. At realistic O pressure, the surface is predicted to contain additional terminal O atoms. Although this O excess defines a so-called polar surface, we show that the prevalent ionic model, that dismisses such terminations on electrostatic grounds, is of little validity for RuO_2(110). Together with analogous results obtained previously at the (0001) surface of corundum-structured oxides, these findings on (110) rutile indicate that the stability of non-stoichiometric terminations is a more general phenomenon on transition metal oxide surfaces.Comment: 12 pages including 5 figures. Submitted to Phys. Rev. B. Related publications can be found at http://www.fhi-berlin.mpg.de/th/paper.htm

    Understanding adhesion at as-deposited interfaces from ab initio thermodynamics of deposition growth: thin-film alumina on titanium carbide

    Full text link
    We investigate the chemical composition and adhesion of chemical vapour deposited thin-film alumina on TiC using and extending a recently proposed nonequilibrium method of ab initio thermodynamics of deposition growth (AIT-DG) [Rohrer J and Hyldgaard P 2010 Phys. Rev. B 82 045415]. A previous study of this system [Rohrer J, Ruberto C and Hyldgaard P 2010 J. Phys.: Condens. Matter 22 015004] found that use of equilibrium thermodynamics leads to predictions of a non-binding TiC/alumina interface, despite the industrial use as a wear-resistant coating. This discrepancy between equilibrium theory and experiment is resolved by the AIT-DG method which predicts interfaces with strong adhesion. The AIT-DG method combines density functional theory calculations, rate-equation modelling of the pressure evolution of the deposition environment and thermochemical data. The AIT-DG method was previously used to predict prevalent terminations of growing or as-deposited surfaces of binary materials. Here we extent the method to predict surface and interface compositions of growing or as-deposited thin films on a substrate and find that inclusion of the nonequilibrium deposition environment has important implications for the nature of buried interfaces.Comment: 8 pages, 6 figures, submitted to J. Phys.: Condens. Matte
    corecore