15 research outputs found
Measuring universal health coverage based on an index of effective coverage of health services in 204 countries and territories, 1990–2019: a systematic analysis for the Global Burden of Disease Study 2019
Background Achieving universal health coverage (UHC) involves all people receiving the health services they need, of high quality, without experiencing financial hardship. Making progress towards UHC is a policy priority for both countries and global institutions, as highlighted by the agenda of the UN Sustainable Development Goals (SDGs) and WHO's Thirteenth General Programme of Work (GPW13). Measuring effective coverage at the health-system level is important for understanding whether health services are aligned with countries' health profiles and are of sufficient quality to produce health gains for populations of all ages. Methods Based on the Global Burden of Diseases, Injuries, and Risk Factors Study (GBD) 2019, we assessed UHC effective coverage for 204 countries and territories from 1990 to 2019. Drawing from a measurement framework developed through WHO's GPW13 consultation, we mapped 23 effective coverage indicators to a matrix representing health service types (eg, promotion, prevention, and treatment) and five population-age groups spanning from reproductive and newborn to older adults (≥65 years). Effective coverage indicators were based on intervention coverage or outcome-based measures such as mortality-to-incidence ratios to approximate access to quality care; outcome-based measures were transformed to values on a scale of 0–100 based on the 2·5th and 97·5th percentile of location-year values. We constructed the UHC effective coverage index by weighting each effective coverage indicator relative to its associated potential health gains, as measured by disability-adjusted life-years for each location-year and population-age group. For three tests of validity (content, known-groups, and convergent), UHC effective coverage index performance was generally better than that of other UHC service coverage indices from WHO (ie, the current metric for SDG indicator 3.8.1 on UHC service coverage), the World Bank, and GBD 2017. We quantified frontiers of UHC effective coverage performance on the basis of pooled health spending per capita, representing UHC effective coverage index levels achieved in 2019 relative to country-level government health spending, prepaid private expenditures, and development assistance for health. To assess current trajectories towards the GPW13 UHC billion target—1 billion more people benefiting from UHC by 2023—we estimated additional population equivalents with UHC effective coverage from 2018 to 2023. Findings Globally, performance on the UHC effective coverage index improved from 45·8 (95% uncertainty interval 44·2–47·5) in 1990 to 60·3 (58·7–61·9) in 2019, yet country-level UHC effective coverage in 2019 still spanned from 95 or higher in Japan and Iceland to lower than 25 in Somalia and the Central African Republic. Since 2010, sub-Saharan Africa showed accelerated gains on the UHC effective coverage index (at an average increase of 2·6% [1·9–3·3] per year up to 2019); by contrast, most other GBD super-regions had slowed rates of progress in 2010–2019 relative to 1990–2010. Many countries showed lagging performance on effective coverage indicators for non-communicable diseases relative to those for communicable diseases and maternal and child health, despite non-communicable diseases accounting for a greater proportion of potential health gains in 2019, suggesting that many health systems are not keeping pace with the rising non-communicable disease burden and associated population health needs. In 2019, the UHC effective coverage index was associated with pooled health spending per capita (r=0·79), although countries across the development spectrum had much lower UHC effective coverage than is potentially achievable relative to their health spending. Under maximum efficiency of translating health spending into UHC effective coverage performance, countries would need to reach adjusted for purchasing power parity) in order to achieve 80 on the UHC effective coverage index. From 2018 to 2023, an estimated 388·9 million (358·6–421·3) more population equivalents would have UHC effective coverage, falling well short of the GPW13 target of 1 billion more people benefiting from UHC during this time. Current projections point to an estimated 3·1 billion (3·0–3·2) population equivalents still lacking UHC effective coverage in 2023, with nearly a third (968·1 million [903·5–1040·3]) residing in south Asia. Interpretation The present study demonstrates the utility of measuring effective coverage and its role in supporting improved health outcomes for all people—the ultimate goal of UHC and its achievement. Global ambitions to accelerate progress on UHC service coverage are increasingly unlikely unless concerted action on non-communicable diseases occurs and countries can better translate health spending into improved performance. Focusing on effective coverage and accounting for the world's evolving health needs lays the groundwork for better understanding how close—or how far—all populations are in benefiting from UHC. Funding Bill & Melinda Gates Foundation
THE NODULE-SPECIFIC VFENOD-GRP3 GENE ENCODING A GLYCINE-RICH EARLY NODULIN IS LOCATED ON CHROMOSOME-I OF VICIA-FABA L AND IS PREDOMINANTLY EXPRESSED IN THE INTERZONE II-III OF ROOT-NODULES
Küster H, SCHRODER G, FRUHLING M, et al. THE NODULE-SPECIFIC VFENOD-GRP3 GENE ENCODING A GLYCINE-RICH EARLY NODULIN IS LOCATED ON CHROMOSOME-I OF VICIA-FABA L AND IS PREDOMINANTLY EXPRESSED IN THE INTERZONE II-III OF ROOT-NODULES. PLANT MOLECULAR BIOLOGY. 1995;28(3):405-421.A nodule-specific cDNA was isolated from a Vicia faba L. nodule cDNA library. Since time course experiments revealed an early expression of this transcript in the nodule, this cDNA coded for an early nodulin and was designated VfENOD-GRP3. Based on tissue print hybridizations, we found a predominant expression of VfENOD-GRP3 transcripts in the interzone II-III region of broad bean root nodules. The encoded early nodulin ENOD-GRP3 was characterized by an N-terminal signal peptide and a C-terminal domain displaying a glycine content of 31%. Sequence analysis of a genomic VfENOD-GRP3 clone revealed that the signal peptide and the glycine-rich domain were specified by two separate exons. Primer extension experiments identified two adjacent transcription start sites for VfENOD-GRP3 transcripts. The common nodulin sequences 'AAAGAT' and 'CTCTT' were present five and three times on both DNA strands of the putative VfENOD-GRP3 promoter, respectively. Additionally, three sequence motifs resembling organ-specific elements of the soybean lbc3 gene promoter and a sequence similar to the binding site 1 for the nodule trans-acting factor Nat2 were identified. From Southern blot data and from sequence analysis of genomic PCR fragments, the presence of a VfENOD-GRP3 gene family was inferred. By PCR experiments using sequence-specific primers and DNA of microisolated chromosomes as a template, this family was located on the long arm of chromosome I