73 research outputs found

    Human CEACAM1 is targeted by a Streptococcus pyogenes adhesin implicated in puerperal sepsis pathogenesis

    Get PDF
    Life-threatening bacterial infections in women after childbirth, known as puerperal sepsis, resulted in classical epidemics and remain a global health problem. While outbreaks of puerperal sepsis have been ascribed to Streptococcus pyogenes, little is known about disease mechanisms. Here, we show that the bacterial R28 protein, which is epidemiologically associated with outbreaks of puerperal sepsis, specifically targets the human receptor CEACAM1. This interaction triggers events that would favor development of puerperal sepsis, including adhesion to cervical cells, suppression of epithelial wound repair and subversion of innate immune responses. High-resolution structural analysis showed that an R28 domain with IgI3-like fold binds to the N-terminal domain of CEACAM1. Together, these findings demonstrate that a single adhesin-receptor interaction can drive the pathogenesis of bacterial sepsis and provide molecular insights into the pathogenesis of one of the most important infectious diseases in medical history

    Bacterial Pili exploit integrin machinery to promote immune activation and efficient blood-brain barrier penetration

    Get PDF
    Group B Streptococcus (GBS) is the leading cause of meningitis in newborn infants. Bacterial cell surface appendages, known as pili, have been recently described in streptococcal pathogens, including GBS. The pilus tip adhesin, PilA, contributes to GBS adherence to blood-brain barrier (BBB) endothelium; however, the host receptor and the contribution of PilA in central nervous system (CNS) disease pathogenesis are unknown. Here we show that PilA binds collagen, which promotes GBS interaction with the Ξ±2Ξ²1 integrin resulting in activation of host chemokine expression and neutrophil recruitment during infection. Mice infected with the PilA-deficient mutant exhibit delayed mortality, a decrease in neutrophil infiltration and bacterial CNS dissemination. We find that PilA-mediated virulence is dependent on neutrophil influx as neutrophil depletion results in a decrease in BBB permeability and GBS–BBB penetration. Our results suggest that the bacterial pilus, specifically the PilA adhesin, has a dual role in immune activation and bacterial entry into the CNS

    Polymorphisms of CD16A and CD32 Fcγ receptors and circulating immune complexes in Ménière's disease: a case-control study

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Autoimmune diseases with elevated circulating autoantibodies drive tissue damage and the onset of disease. The Fcγ receptors bind IgG subtypes modulating the clearance of circulating immune complexes (CIC). The inner ear damage in Ménière's disease (MD) could be mediated by an immune response driven by CIC. We examined single-nucleotide polymorphism (SNPs) in the CD16A and CD32 genes in patients with MD which may determine a Fcγ receptor with lower binding to CIC.</p> <p>Methods</p> <p>The functional CD16A (FcγRIIIa*559A > C, rs396991) and CD32A (FcγRIIa*519A > G, rs1801274) SNPs were analyzed using PCR-based TaqMan Genotyping Assay in two cohorts of 156 mediterranean and 112 Galicia patients in a case-control study. Data were analyzed by χ<sup>2 </sup>with Fisher's exact test and Cochran-Armitage trend test (CATT). CIC were measured by ELISA for C1q-binding CIC.</p> <p>Results</p> <p>Elevated CIC were found in 7% of patients with MD during the intercrisis period. No differences were found in the allelic frequency for rs396991 or rs1801274 in controls subjects when they were compared with patients with MD from the same geographic area. However, the frequency of AA and AC genotypes of CD16A (rs396991) differed among mediterranean and Galicia controls (Fisher's test, corrected p = 6.9 × 10<sup>-4 </sup>for AA; corrected p = 0.02 for AC). Although genotype AC of the CD16A receptor was significantly more frequent in mediterranean controls than in patients, [Fisher's test corrected p = 0.02; OR = 0.63 (0.44-0.91)], a genetic additive effect for the allele C was not observed (CATT, p = 0.23). Moreover, no differences were found in genotype frequencies for rs396991 between patients with MD and controls from Galicia (CATT, p = 0.14). The allelic frequency of CD32 (rs1801274) was not different between patients and controls either in mediterranean (p = 0.51) or Galicia population (p = 0.11).</p> <p>Conclusions</p> <p>Elevated CIC are not found in most of patients with MD. Functional polymorphisms of CD16A and CD32 genes are not associated with onset of MD.</p

    Pharmacogenetic profiling and cetuximab outcome in patients with advanced colorectal cancer

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>We analyzed the influence of 8 germinal polymorphisms of candidate genes potentially related to EGFR signalling (<it>EGFR</it>, <it>EGF</it>, <it>CCND1</it>) or antibody-directed cell cytotoxicity (<it>FCGR2A </it>and <it>FCGR3A</it>) on outcome of colorectal cancer (CRC) patients receiving cetuximab-based therapy.</p> <p>Methods</p> <p>Fifty-eight advanced CRC patients treated with cetuximab-irinotecan salvage therapy between 2001 and 2007 were analyzed (mean age 60; 50 PS 0-1). The following polymorphisms were analyzed on blood DNA: <it>EGFR </it>(CA repeats in intron 1, -216 G > T, -191C > A, R497K), <it>EGF </it>(A61G), <it>CCND1 </it>(A870G), <it>FCGR2A </it>(R131H), <it>FCGR3A </it>(F158V). Statistical analyses were conducted on the total population and on patients with wt KRas tumors. All SNPs were considered as ternary variables (wt/wt <it>vs </it>wt/mut <it>vs </it>mut/mut), with the exception of -191C > A <it>EGFR </it>polymorphism (AA patient merged with CA patients).</p> <p>Results</p> <p>Analysis of skin toxicity as a function of EGFR intron 1 polymorphism showed a tendency for higher toxicity in patients with a low number of CA-repeats (p = 0.058). <it>CCND1 </it>A870G polymorphism was significantly related to clinical response, both in the entire population and in KRas wt patients, with the G allele being associated with a lack of response. In wt KRas patients, time to progression (TTP) was significantly related to <it>EGFR </it>-191C > A polymorphism with a longer TTP in CC patients as compared to others, and to <it>CCND1 </it>A870G polymorphism with the G allele being associated with a shorter TTP; a multivariate analysis including these two polymorphisms only retained <it>CCND1 </it>polymorphism. Overall survival was significantly related to <it>CCND1 </it>polymorphism with a shorter survival in patients bearing the G allele, and to <it>FCGR3A </it>F158V polymorphism with a shorter survival in VV patients (in the entire population and in KRas wt patients). <it>FCGR3A </it>F158V and <it>CCND1 </it>A870G polymorphisms were significant independent predictors of overall survival.</p> <p>Conclusions</p> <p>Present original data obtained in wt KRas patients corresponding to the current cetuximab-treated population clearly suggest that <it>CCND1 </it>A870G polymorphism may be used as an additional marker for predicting cetuximab efficacy, TTP and overall survival. In addition, <it>FCGR3A </it>F158V polymorphism was a significant independent predictor of overall survival.</p

    Lung Epithelial Injury by B. Anthracis Lethal Toxin Is Caused by MKK-Dependent Loss of Cytoskeletal Integrity

    Get PDF
    Bacillus anthracis lethal toxin (LT) is a key virulence factor of anthrax and contributes significantly to the in vivo pathology. The enzymatically active component is a Zn2+-dependent metalloprotease that cleaves most isoforms of mitogen-activated protein kinase kinases (MKKs). Using ex vivo differentiated human lung epithelium we report that LT destroys lung epithelial barrier function and wound healing responses by immobilizing the actin and microtubule network. Long-term exposure to the toxin generated a unique cellular phenotype characterized by increased actin filament assembly, microtubule stabilization, and changes in junction complexes and focal adhesions. LT-exposed cells displayed randomly oriented, highly dynamic protrusions, polarization defects and impaired cell migration. Reconstitution of MAPK pathways revealed that this LT-induced phenotype was primarily dependent on the coordinated loss of MKK1 and MKK2 signaling. Thus, MKKs control fundamental aspects of cytoskeletal dynamics and cell motility. Even though LT disabled repair mechanisms, agents such as keratinocyte growth factor or dexamethasone improved epithelial barrier integrity by reducing cell death. These results suggest that co-administration of anti-cytotoxic drugs may be of benefit when treating inhalational anthrax

    Bacillus anthracis Protease InhA Increases Blood-Brain Barrier Permeability and Contributes to Cerebral Hemorrhages

    Get PDF
    Hemorrhagic meningitis is a fatal complication of anthrax, but its pathogenesis remains poorly understood. The present study examined the role of B. anthracis-secreted metalloprotease InhA on monolayer integrity and permeability of human brain microvasculature endothelial cells (HBMECs) which constitute the blood-brain barrier (BBB). Treatment of HBMECs with purified InhA resulted in a time-dependent decrease in trans-endothelial electrical resistance (TEER) accompanied by zonula occluden-1 (ZO-1) degradation. An InhA-expressing B. subtilis exhibited increased permeability of HBMECs, which did not occur with the isogenic inhA deletion mutant (Ξ”inhA) of B. anthracis, compared with the corresponding wild-type strain. Mice intravenously administered with purified InhA or nanoparticles-conjugated to InhA demonstrated a time-dependent Evans Blue dye extravasation, leptomeningeal thickening, leukocyte infiltration, and brain parenchymal distribution of InhA indicating BBB leakage and cerebral hemorrhage. Mice challenged with vegetative bacteria of the Ξ”inhA strain of B. anthracis exhibited a significant decrease in leptomeningeal thickening compared to the wildtype strain. Cumulatively, these findings indicate that InhA contributes to BBB disruption associated with anthrax meningitis through proteolytic attack on the endothelial tight junctional protein zonula occluden (ZO)-1

    The Pneumococcal Serine-Rich Repeat Protein Is an Intra-Species Bacterial Adhesin That Promotes Bacterial Aggregation In Vivo and in Biofilms

    Get PDF
    The Pneumococcal serine-rich repeat protein (PsrP) is a pathogenicity island encoded adhesin that has been positively correlated with the ability of Streptococcus pneumoniae to cause invasive disease. Previous studies have shown that PsrP mediates bacterial attachment to Keratin 10 (K10) on the surface of lung cells through amino acids 273–341 located in the Basic Region (BR) domain. In this study we determined that the BR domain of PsrP also mediates an intra-species interaction that promotes the formation of large bacterial aggregates in the nasopharynx and lungs of infected mice as well as in continuous flow-through models of mature biofilms. Using numerous methods, including complementation of mutants with BR domain deficient constructs, fluorescent microscopy with Cy3-labeled recombinant (r)BR, Far Western blotting of bacterial lysates, co-immunoprecipitation with rBR, and growth of biofilms in the presence of antibodies and competitive peptides, we determined that the BR domain, in particular amino acids 122–166 of PsrP, promoted bacterial aggregation and that antibodies against the BR domain were neutralizing. Using similar methodologies, we also determined that SraP and GspB, the Serine-rich repeat proteins (SRRPs) of Staphylococcus aureus and Streptococcus gordonii, respectively, also promoted bacterial aggregation and that their Non-repeat domains bound to their respective SRRPs. This is the first report to show the presence of biofilm-like structures in the lungs of animals infected with S. pneumoniae and show that SRRPs have dual roles as host and bacterial adhesins. These studies suggest that recombinant Non-repeat domains of SRRPs (i.e. BR for S. pneumoniae) may be useful as vaccine antigens to protect against Gram-positive bacteria that cause infection

    Glycosaminoglycan Binding Facilitates Entry of a Bacterial Pathogen into Central Nervous Systems

    Get PDF
    Certain microbes invade brain microvascular endothelial cells (BMECs) to breach the blood-brain barrier (BBB) and establish central nervous system (CNS) infection. Here we use the leading meningitis pathogen group B Streptococcus (GBS) together with insect and mammalian infection models to probe a potential role of glycosaminoglycan (GAG) interactions in the pathogenesis of CNS entry. Site-directed mutagenesis of a GAG-binding domain of the surface GBS alpha C protein impeded GBS penetration of the Drosophila BBB in vivo and diminished GBS adherence to and invasion of human BMECs in vitro. Conversely, genetic impairment of GAG expression in flies or mice reduced GBS dissemination into the brain. These complementary approaches identify a role for bacterial-GAG interactions in the pathogenesis of CNS infection. Our results also highlight how the simpler yet genetically conserved Drosophila GAG pathways can provide a model organism to screen candidate molecules that can interrupt pathogen-GAG interactions for future therapeutic applications

    Serotype distribution of remaining pneumococcal meningitis in the mature PCV10/13 period: Findings from the PSERENADE Project

    Get PDF
    Pneumococcal conjugate vaccine (PCV) introduction has reduced pneumococcal meningitis incidence. The Pneumococcal Serotype Replacement and Distribution Estimation (PSERENADE) project described the serotype distribution of remaining pneumococcal meningitis in countries using PCV10/13 for least 5-7 years with primary series uptake above 70%. The distribution was estimated using a multinomial Dirichlet regression model, stratified by PCV product and age. In PCV10-using sites (N = 8; cases = 1141), PCV10 types caused 5% of cases <5 years of age and 15% among β‰₯5 years; the top serotypes were 19A, 6C, and 3, together causing 42% of cases <5 years and 37% β‰₯5 years. In PCV13-using sites (N = 32; cases = 4503), PCV13 types caused 14% in <5 and 26% in β‰₯5 years; 4% and 13%, respectively, were serotype 3. Among the top serotypes are five (15BC, 8, 12F, 10A, and 22F) included in higher-valency PCVs under evaluation. Other top serotypes (24F, 23B, and 23A) are not in any known investigational product. In countries with mature vaccination programs, the proportion of pneumococcal meningitis caused by vaccine-in-use serotypes is lower (≀26% across all ages) than pre-PCV (β‰₯70% in children). Higher-valency PCVs under evaluation target over half of remaining pneumococcal meningitis cases, but questions remain regarding generalizability to the African meningitis belt where additional data are needed
    • …
    corecore