394 research outputs found
Establishing the role of rare coding variants in known Parkinson's disease risk loci
Many common genetic factors have been identified to contribute to Parkinson's disease (PD) susceptibility, improving our understanding of the related underlying biological mechanisms. The involvement of rarer variants in these loci has been poorly studied. Using International Parkinson's Disease Genomics Consortium data sets, we performed a comprehensive study to determine the impact of rare variants in 23 previously published genome-wide association studies (GWAS) loci in PD. We applied Prix fixe to select the putative causal genes underneath the GWAS peaks, which was based on underlying functional similarities. The Sequence Kernel Association Test was used to analyze the joint effect of rare, common, or both types of variants on PD susceptibility. All genes were tested simultaneously as a gene set and each gene individually. We observed a moderate association of common variants, confirming the involvement of the known PD risk loci within our genetic data sets. Focusing on rare variants, we identified additional association signals for LRRK2, STBD1, and SPATA19. Our study suggests an involvement of rare variants within several putatively causal genes underneath previously identified PD GWAS peaks
Markedly Divergent Tree Assemblage Responses to Tropical Forest Loss and Fragmentation across a Strong Seasonality Gradient
We examine the effects of forest fragmentation on the structure and composition of tree assemblages within three seasonal and aseasonal forest types of southern Brazil, including evergreen, Araucaria, and deciduous forests. We sampled three southernmost Atlantic Forest landscapes, including the largest continuous forest protected areas within each forest type. Tree assemblages in each forest type were sampled within 10 plots of 0.1 ha in both continuous forests and 10 adjacent forest fragments. All trees within each plot were assigned to trait categories describing their regeneration strategy, vertical stratification, seed-dispersal mode, seed size, and wood density. We detected differences among both forest types and landscape contexts in terms of overall tree species richness, and the density and species richness of different functional groups in terms of regeneration strategy, seed dispersal mode and woody density. Overall, evergreen forest fragments exhibited the largest deviations from continuous forest plots in assemblage structure. Evergreen, Araucaria and deciduous forests diverge in the functional composition of tree floras, particularly in relation to regeneration strategy and stress tolerance. By supporting a more diversified light-demanding and stress-tolerant flora with reduced richness and abundance of shade-tolerant, old-growth species, both deciduous and Araucaria forest tree assemblages are more intrinsically resilient to contemporary human-disturbances, including fragmentation-induced edge effects, in terms of species erosion and functional shifts. We suggest that these intrinsic differences in the direction and magnitude of responses to changes in landscape structure between forest types should guide a wide range of conservation strategies in restoring fragmented tropical forest landscapes worldwide
A lightweight sensing platform for monitoring sleep quality and posture: a simulated validation study
Background
The prevalence of self-reported shoulder pain in the UK has been estimated at 16%. This has been linked with significant sleep disturbance. It is possible that this relationship is bidirectional, with both symptoms capable of causing the other. Within the field of sleep monitoring, there is a requirement for a mobile and unobtrusive device capable of monitoring sleep posture and quality. This study investigates the feasibility of a wearable sleep system (WSS) in accurately detecting sleeping posture and physical activity.
Methods
Sixteen healthy subjects were recruited and fitted with three wearable inertial sensors on the trunk and forearms. Ten participants were entered into a ‘Posture’ protocol; assuming a series of common sleeping postures in a simulated bedroom. Five participants completed an ‘Activity’ protocol, in which a triphasic simulated sleep was performed including awake, sleep and REM phases. A combined sleep posture and activity protocol was then conducted as a ‘Proof of Concept’ model. Data were used to train a posture detection algorithm, and added to activity to predict sleep phase. Classification accuracy of the WSS was measured during the simulations.
Results
The WSS was found to have an overall accuracy of 99.5% in detection of four major postures, and 92.5% in the detection of eight minor postures. Prediction of sleep phase using activity measurements was accurate in 97.3% of the simulations. The ability of the system to accurately detect both posture and activity enabled the design of a conceptual layout for a user-friendly tablet application.
Conclusions
The study presents a pervasive wearable sensor platform, which can accurately detect both sleeping posture and activity in non-specialised environments. The extent and accuracy of sleep metrics available advances the current state-of-the-art technology. This has potential diagnostic implications in musculoskeletal pathology and with the addition of alerts may provide therapeutic value in a range of areas including the prevention of pressure sores
Increased blood product use among coronary artery bypass patients prescribed preoperative aspirin and clopidogrel
BACKGROUND: The administration of antiplatelet drugs before coronary artery bypass graft surgery (CABG) is associated with an increased risk of major hemorrhage and related surgical reexploration. Little is known about the relative effect of combined clopidogrel and aspirin on blood product use around the time of CABG. We evaluated the associated risk between the combined use of aspirin and clopidogrel and the transfusion of blood products perioperatively. METHODS: We retrospectively studied a cohort of 659 individuals who underwent a first CABG, without concomitant valvular or aortic surgery, at a single large Canadian cardiac surgical centre between January 2000 and April 2002. The four study exposure groups were those prescribed aspirin (n = 105), clopidogrel (n = 11), the combination of both (n = 46), or neither drug (n = 497), within 7 days prior to CABG. The primary study outcome was the excessive transfusion of blood products during CABG and up to the second post-operative day, defined as ≥ 2 units of packed red blood cells (PRBC), ≥ 2 units of fresh frozen plasma, ≥ 5 units of cryoprecipitate or ≥ 5 units of platelets. Secondary outcomes included the mean number of transfused units of each type of blood product. RESULTS: A greater mean number of units of PRBC were transfused among those who received clopidogrel alone (2.9) or in combination with aspirin (2.4), compared to those on aspirin alone (1.9) or neither antiplatelet drug (1.4) (P = 0.001). A similar trend was seen for the respective mean number of transfused units of platelets (3.6, 3.7, 1.3 and 1.0; P < 0.001) and fresh frozen plasma (2.5, 3.1, 2.3, 1.6; P = 0.01). Compared to non-users, the associated risk of excessive blood product transfusion was highest among recipients of aspirin and clopidogrel together (adjusted OR 2.2, 95% CI 1.1–4.3). No significant association was seen among lone users of aspirin (adjusted OR 1.0, 95% CI 0.6–1.6) or clopidogrel (adjusted OR 0.7, 95% CI 0.2–2.5), compared to non-users. CONCLUSIONS: While combined use of aspirin and clopidogrel shortly before CABG surgery may increase the associated risk of excess transfusion of blood products perioperatively, several study limitations prevent any confident conclusions from being drawn. Beyond challenging these findings, future research might focus on the value of both intraoperative monitoring of platelet function, and the effectiveness of antifibrinolytic agents, at reducing the risk of postoperative bleeding
Function and failure of the fetal membrane : modelling the mechanics of the chorion and amnion
The fetal membrane surrounds the fetus during pregnancy and is a thin tissue composed of two layers, the chorion and the amnion. While rupture of this membrane normally occurs at term, preterm rupture can result in increased risk of fetal mortality and morbidity, as well as danger of infection in the mother. Although structural changes have been observed in the membrane in such cases, the mechanical behaviour of the human fetal membrane in vivo remains poorly understood and is challenging to investigate experimentally. Therefore, the objective of this study was to develop simplified finite element models to investigate the mechanical behaviour and rupture of the fetal membrane, particularly its constituent layers, under various physiological conditions. It was found that modelling the chorion and amnion as a single layer predicts remarkably different behaviour compared with a more anatomically-accurate bilayer, significantly underestimating stress in the amnion and under-predicting the risk of membrane rupture. Additionally, reductions in chorion-amnion interface lubrication and chorion thickness (reported in cases of preterm rupture) both resulted in increased membrane stress. Interestingly, the inclusion of a weak zone in the fetal membrane that has been observed to develop overlying the cervix would likely cause it to fail at term, during labour. Finally, these findings support the theory that the amnion is the dominant structural component of the fetal membrane and is required to maintain its integrity. The results provide a novel insight into the mechanical effect of structural changes in the chorion and amnion, in cases of both normal and preterm rupture
Establishing the role of rare coding variants in known Parkinson's disease risk loci
Many common genetic factors have been identified to contribute to Parkinson's disease (PD) susceptibility, improving our understanding of the related underlying biological mechanisms. The involvement of rarer variants in these loci has been poorly studied. Using International Parkinson's Disease Genomics Consortium data sets, we performed a comprehensive study to determine the impact of rare variants in 23 previously published genome-wide association studies (GWAS) loci in PD. We applied Prix fixe to select the putative causal genes underneath the GWAS peaks, which was based on underlying functional similarities. The Sequence Kernel Association Test was used to analyze the joint effect of rare, common, or both types of variants on PD susceptibility. All genes were tested simultaneously as a gene set and each gene individually. We observed a moderate association of common variants, confirming the involvement of the known PD risk loci within our genetic data sets. Focusing on rare variants, we identified additional association signals for LRRK2, STBD1, and SPATA19. Our study suggests an involvement of rare variants within several putatively causal genes underneath previously identified PD GWAS peaks
Topological Cluster Analysis Reveals the Systemic Organization of the Caenorhabditis elegans Connectome
The modular organization of networks of individual neurons interwoven through synapses has not been fully explored due to the incredible complexity of the connectivity architecture. Here we use the modularity-based community detection method for directed, weighted networks to examine hierarchically organized modules in the complete wiring diagram (connectome) of Caenorhabditis elegans (C. elegans) and to investigate their topological properties. Incorporating bilateral symmetry of the network as an important cue for proper cluster assignment, we identified anatomical clusters in the C. elegans connectome, including a body-spanning cluster, which correspond to experimentally identified functional circuits. Moreover, the hierarchical organization of the five clusters explains the systemic cooperation (e.g., mechanosensation, chemosensation, and navigation) that occurs among the structurally segregated biological circuits to produce higher-order complex behaviors
- …