22 research outputs found

    The evolutionary significance of polyploidy

    Get PDF
    Polyploidy, or the duplication of entire genomes, has been observed in prokaryotic and eukaryotic organisms, and in somatic and germ cells. The consequences of polyploidization are complex and variable, and they differ greatly between systems (clonal or non-clonal) and species, but the process has often been considered to be an evolutionary 'dead end'. Here, we review the accumulating evidence that correlates polyploidization with environmental change or stress, and that has led to an increased recognition of its short-term adaptive potential. In addition, we discuss how, once polyploidy has been established, the unique retention profile of duplicated genes following whole-genome duplication might explain key longer-term evolutionary transitions and a general increase in biological complexity

    A competitive integration model of exogenous and endogenous eye movements

    Get PDF
    We present a model of the eye movement system in which the programming of an eye movement is the result of the competitive integration of information in the superior colliculi (SC). This brain area receives input from occipital cortex, the frontal eye fields, and the dorsolateral prefrontal cortex, on the basis of which it computes the location of the next saccadic target. Two critical assumptions in the model are that cortical inputs are not only excitatory, but can also inhibit saccades to specific locations, and that the SC continue to influence the trajectory of a saccade while it is being executed. With these assumptions, we account for many neurophysiological and behavioral findings from eye movement research. Interactions within the saccade map are shown to account for effects of distractors on saccadic reaction time (SRT) and saccade trajectory, including the global effect and oculomotor capture. In addition, the model accounts for express saccades, the gap effect, saccadic reaction times for antisaccades, and recorded responses from neurons in the SC and frontal eye fields in these tasks. © The Author(s) 2010

    The DSM diagnostic criteria for female orgasmic disorder

    Get PDF
    This is the post-print version of the article. The official published version can be found at the link below.This article reviews the DSM diagnostic criteria for Female Orgasmic Disorder (FOD). Following an overview of the concept of female orgasm, research on the prevalence and associated features of FOD is briefly reviewed. Specific aspects of the DSM-IV-TR criteria for FOD are critically reviewed and key issues that should be considered for DSM-V are discussed. The DSM-IV-TR text on FOD focused on the physiological changes that may (or may not) accompany orgasm in women; one of the major recommendations here is that greater emphasis be given to the subjective aspects of the experience of orgasm. Additional specific recommendations are made for revision of diagnostic criteria, including the use of minimum severity and duration criteria, and better acknowledgment of the crucial role of relationship factors in FOD

    The DSM diagnostic criteria for Female Sexual Arousal Disorder

    Get PDF
    This article reviews and critiques the DSM-IV-TR diagnostic criteria for Female Sexual Arousal Disorder (FSAD). An overview of how the diagnostic criteria for FSAD have evolved over previous editions of the DSM is presented and research on prevalence and etiology of FSAD is briefly reviewed. Problems with the essential feature of the DSM-IV-TR diagnosis — “an inability to attain, or to maintain…an adequate lubrication-swelling response of sexual excitement” — are identified. The significant overlap between “arousal” and “desire” disorders is highlighted. Finally, specific recommendations for revision of the criteria for DSM-V are made, including use of a polythetic approach to the diagnosis and the addition of duration and severity criteria

    Diagnosis and Treatment of Erectile Problems

    No full text

    Transcriptomic variation of eyestalk reveals the genes and biological processes associated with molting in Portunus trituberculatus.

    Get PDF
    BACKGROUND:Molting is an essential biological process throughout the life history of crustaceans, which is regulated by many neuropeptide hormones expressed in the eyestalk. To better understand the molting mechanism in Portunus trituberculatus, we used digital gene expression (DGE) to analyze single eyestalk samples during the molting cycle by high-throughput sequencing. RESULTS:We obtained 14,387,942, 12,631,508 and 13,060,062 clean sequence reads from inter-molt (InM), pre-molt (PrM) and post-molt (PoM) cDNA libraries, respectively. A total of 1,394 molt-related differentially expressed genes (DEGs) were identified. GO and KEGG enrichment analysis identified some important processes and pathways with key roles in molting regulation, such as chitin metabolism, peptidase inhibitor activity, and the ribosome. We first observed a pattern associated with the neuromodulator-related pathways during the molting cycle, which were up-regulated in PrM and down-regulated in PoM. Four categories of important molting-related transcripts were clustered and most of them had similar expression patterns, which suggests that there is a connection between these genes throughout the molt cycle. CONCLUSION:Our work is the first molt-related investigation of P. trituberculatus focusing on the eyestalk at the whole transcriptome level. Together, our results, including DEGs, identification of molting-related biological processes and pathways, and observed expression patterns of important genes, provide a novel insight into the function of the eyestalk in molting regulation
    corecore