27 research outputs found

    Kinin-B2 Receptor Mediated Neuroprotection after NMDA Excitotoxicity Is Reversed in the Presence of Kinin-B1 Receptor Agonists

    Get PDF
    Background: Kinins, with bradykinin and des-Arg 9-bradykinin being the most important ones, are pro-inflammatory peptides released after tissue injury including stroke. Although the actions of bradykinin are in general well characterized; it remains controversial whether the effects of bradykinin are beneficial or not. Kinin-B2 receptor activation participates in various physiological processes including hypotension, neurotransmission and neuronal differentiation. The bradykinin metabolite des-Arg 9-bradykinin as well as Lys-des-Arg 9-bradykinin activates the kinin-B1 receptor known to be expressed under inflammatory conditions. We have investigated the effects of kinin-B1 and B2 receptor activation on N-methyl-Daspartate (NMDA)-induced excitotoxicity measured as decreased capacity to produce synaptically evoked population spikes in the CA1 area of rat hippocampal slices. Principal Findings: Bradykinin at 10 nM and 1 mM concentrations triggered a neuroprotective cascade via kinin-B2 receptor activation which conferred protection against NMDA-induced excitotoxicity. Recovery of population spikes induced by 10 nM bradykinin was completely abolished when the peptide was co-applied with the selective kinin-B2 receptor antagonist HOE-140. Kinin-B2 receptor activation promoted survival of hippocampal neurons via phosphatidylinositol 3-kinase, while MEK/MAPK signaling was not involved in protection against NMDA-evoked excitotoxic effects. However, 100 nM Lys-des-Arg 9-bradykinin, a potent kinin-B1 receptor agonist, reversed bradykinin-induced population spik

    Bradykinin does not mediate remote ischaemic preconditioning or ischaemia-reperfusion injury in vivo in man

    No full text
    OBJECTIVE: To examine whether endogenous bradykinin mediates the endothelium-dependent vasomotor dysfunction induced by ischaemia-reperfusion injury, or the protection afforded by remote ischaemic preconditioning in vivo in man. DESIGN: Randomised double-blind, cross-over study. SETTINGS: Royal Infirmary of Edinburgh, Wellcome Trust Clinical Research Facility. PATIENTS: Twenty healthy male volunteers. INTERVENTIONS: Subjects were randomised to intravenous infusion of the bradykinin B(2) receptor antagonist, HOE-140 (100 μg/kg), or saline placebo in a double-blind, crossover trial. Ischaemia-reperfusion injury was induced in the non-dominant arm by inflating a cuff to 200 mm Hg for 20 min in all subjects. Ischaemia-reperfusion injury was preceded by three cycles of remote ischaemic preconditioning in the dominant arm in 10 subjects. MAIN OUTCOME MEASURES: Bilateral forearm blood flow was assessed using venous occlusion plethysmography during intra-arterial infusion of acetylcholine (5-20 μg/min). RESULTS: Acetylcholine caused vasodilatation in all studies (p<0.05) that was attenuated by ischaemia-reperfusion injury, both in the presence (p=0.0002) and absence (p=0.04) of HOE-140. Remote ischaemic preconditioning abolished the impairment of endothelium-dependent vasomotor function induced by ischaemia-reperfusion injury. HOE-140 had no effect on the protection afforded by remote ischaemic preconditioning. CONCLUSIONS: These findings do not support a major role for endogenous bradykinin, acting via the B(2) kinin receptor, in the mechanism of ischaemia-reperfusion injury or the protective effects of remote ischaemic preconditioning in man. CLINICAL TRIAL REGISTRATION INFORMATION: NCT00965120 and NCT00965393
    corecore