240 research outputs found
The complexity of multidisciplinary respiratory care in amyotrophic lateral sclerosis
Motor neurone disease/amyotrophic lateral sclerosis (ALS) is a progressive neurodegenerative disorder with no known cure, where death is usually secondary to progressive respiratory failure. Assisting people with ALS through their disease journey is complex and supported by clinics that provide comprehensive multidisciplinary care (MDC). This review aims to apply both a respiratory and a complexity lens to the key roles and areas of practice within the MDC model in ALS. Models of noninvasive ventilation care, and considerations in the provision of palliative therapy, respiratory support, and speech and language therapy are discussed. The impact on people living with ALS of both inequitable funding models and the complexity of clinical care decisions are illustrated using case vignettes. Considerations of the impact of emerging antisense and gene modifying therapies on MDC challenges are also highlighted. The review seeks to illustrate how MDC members contribute to collective decision-making in ALS, how the sum of the parts is greater than any individual care component or health professional, and that the MDC per se adds value to the person living with ALS. Through this approach we hope to support clinicians to navigate the space between what are minimum, guideline-driven, standards of care and what excellent, person-centred ALS care that fully embraces complexity could be
Inhibition of Nox2 Oxidase Activity Ameliorates Influenza A Virus-Induced Lung Inflammation
Influenza A virus pandemics and emerging anti-viral resistance highlight the urgent need for novel generic pharmacological strategies that reduce both viral replication and lung inflammation. We investigated whether the primary enzymatic source of inflammatory cell ROS (reactive oxygen species), Nox2-containing NADPH oxidase, is a novel pharmacological target against the lung inflammation caused by influenza A viruses. Male WT (C57BL/6) and Nox2−/y mice were infected intranasally with low pathogenicity (X-31, H3N2) or higher pathogenicity (PR8, H1N1) influenza A virus. Viral titer, airways inflammation, superoxide and peroxynitrite production, lung histopathology, pro-inflammatory (MCP-1) and antiviral (IL-1β) cytokines/chemokines, CD8+ T cell effector function and alveolar epithelial cell apoptosis were assessed. Infection of Nox2−/y mice with X-31 virus resulted in a significant reduction in viral titers, BALF macrophages, peri-bronchial inflammation, BALF inflammatory cell superoxide and lung tissue peroxynitrite production, MCP-1 levels and alveolar epithelial cell apoptosis when compared to WT control mice. Lung levels of IL-1β were ∼3-fold higher in Nox2−/y mice. The numbers of influenza-specific CD8+DbNP366+ and DbPA224+ T cells in the BALF and spleen were comparable in WT and Nox2−/y mice. In vivo administration of the Nox2 inhibitor apocynin significantly suppressed viral titer, airways inflammation and inflammatory cell superoxide production following infection with X-31 or PR8. In conclusion, these findings indicate that Nox2 inhibitors have therapeutic potential for control of lung inflammation and damage in an influenza strain-independent manner
Referral patterns and attitudes of Primary Care Physicians towards chiropractors
BACKGROUND: Despite the increasing usage and popularity of chiropractic care, there has been limited research conducted to examine the professional relationships between conventional trained primary care physicians (PCPs) and chiropractors (DCs). The objectives of our study were to contrast the intra-professional referral patterns among PCPs with referral patterns to DCs, and to identify predictors of PCP referral to DCs. METHODS: We mailed a survey instrument to all practicing PCPs in the state of Iowa. Descriptive statistics were used to summarize their responses. Multivariable logistic regression analyses were conducted to identify demographic factors associated with inter-professional referral behaviors. RESULTS: A total of 517 PCPs (33%) participated in the study. PCPs enjoyed strong intra-professional referral relationships with other PCPs. Although patients exhibited a great deal of interest in chiropractic care, PCPs were unlikely themselves to make formal referral relationships with DCs. PCPs in a private practice arrangement were more likely to exhibit positive referral attitudes towards DCs (p = 0.01). CONCLUSION: PCPs enjoy very good professional relationships with other PCPs. However, the lack of direct formalized referral relationships between PCPs and chiropractors has implications for efficiency, continuity, quality, and patient safety in the health care delivery system. Future research must focus on identifying facilitators and barriers for developing positive relationships between PCPs and chiropractors
Sodium Chloride Inhibits the Growth and Infective Capacity of the Amphibian Chytrid Fungus and Increases Host Survival Rates
The amphibian chytrid fungus Batrachochytrium dendrobatidis is a recently emerged pathogen that causes the infectious disease chytridiomycosis and has been implicated as a contributing factor in the global amphibian decline. Since its discovery, research has been focused on developing various methods of mitigating the impact of chytridiomycosis on amphibian hosts but little attention has been given to the role of antifungal agents that could be added to the host's environment. Sodium chloride is a known antifungal agent used routinely in the aquaculture industry and this study investigates its potential for use as a disease management tool in amphibian conservation. The effect of 0–5 ppt NaCl on the growth, motility and survival of the chytrid fungus when grown in culture media and its effect on the growth, infection load and survivorship of infected Peron's tree frogs (Litoria peronii) in captivity, was investigated. The results reveal that these concentrations do not negatively affect the survival of the host or the pathogen. However, concentrations greater than 3 ppt significantly reduced the growth and motility of the chytrid fungus compared to 0 ppt. Concentrations of 1–4 ppt NaCl were also associated with significantly lower host infection loads while infected hosts exposed to 3 and 4 ppt NaCl were found to have significantly higher survival rates. These results support the potential for NaCl to be used as an environmentally distributed antifungal agent for the prevention of chytridiomycosis in susceptible amphibian hosts. However, further research is required to identify any negative effects of salt exposure on both target and non-target organisms prior to implementation
The cytochrome bd-I respiratory oxidase augments survival of multidrug-resistant Escherichia coli during infection
Nitric oxide (NO) is a toxic free radical produced by neutrophils and macrophages in response to infection. Uropathogenic Escherichia coli (UPEC) induces a variety of defence mechanisms in response to NO, including direct NO detoxification (Hmp, NorVW, NrfA), iron-sulphur cluster repair (YtfE), and the expression of the NO-tolerant cytochrome bd-I respiratory oxidase (CydAB). The current study quantifies the relative contribution of these systems to UPEC growth and survival during infection. Loss of the flavohemoglobin Hmp and cytochrome bd-I elicit the greatest sensitivity to NO-mediated growth inhibition, whereas all but the periplasmic nitrite reductase NrfA provide protection against neutrophil killing and promote survival within activated macrophages. Intriguingly, the cytochrome bd-I respiratory oxidase was the only system that augmented UPEC survival in a mouse model after 2 days, suggesting that maintaining aerobic respiration under conditions of nitrosative stress is a key factor for host colonisation. These findings suggest that while UPEC have acquired a host of specialized mechanisms to evade nitrosative stresses, the cytochrome bd-I respiratory oxidase is the main contributor to NO tolerance and host colonisation under microaerobic conditions. This respiratory complex is therefore of major importance for the accumulation of high bacterial loads during infection of the urinary tract
Generic Insect Repellent Detector from the Fruit Fly Drosophila melanogaster
Background: Insect repellents are prophylactic tools against a number of vector-borne diseases. There is growing demand for repellents outperforming DEET in cost and safety, but with the current technologies R&D of a new product takes almost 10 years, with a prohibitive cost of $30 million dollar in part due to the demand for large-scale synthesis of thousands of test compounds of which only 1 may reach the market. R&D could be expedited and cost dramatically reduced with a molecular/physiological target to streamline putative repellents for final efficacy and toxicological tests. Methodology: Using olfactory-based choice assay we show here that the fruit fly is repelled by not only DEET, but also IR3535 and picaridin thus suggesting they might have ‘‘generic repellent detector(s),’ ’ which may be of practical applications in new repellent screenings. We performed single unit recordings from all olfactory sensilla in the antennae and maxillary palps. Although the ab3A neuron in the wild type flies responded to picaridin, it was unresponsive to DEET and IR3535. By contrast, a neuron housed in the palp basiconic sensilla pb1 responded to DEET, IR3535, and picaridin, with apparent sensitivity higher than that of the DEET detectors in the mosquitoes Culex quinquefasciatus and Aedes aegypti. DmOr42a was transplanted from pb1 to the ‘‘empty neuron’ ’ and showed to be sensitive to the three insect repellents. Conclusions: For the first time we have demonstrated that the fruit fly avoids not only DEET but also IR3535 and picaridin, and identified an olfactory receptor neuron (ORN), which is sensitive to these three major insect repellents. We have als
Exploring types of focused factories in hospital care: a multiple case study
Background: Focusing on specific treatments or diseases is proposed as a way to increase the efficiency of hospital care. The definition of "focus" or "focused factory", however, lacks clarity. Examples in health care literature relate to very different organizations.\ud
Our aim was to explore the application of the focused factory concept in hospital care, including an indication of its performance, resulting in a conceptual framework that can be helpful in further identifying different types of focused factories. Thus contributing to the understanding of the diversity of examples found in the literature. - \ud
\ud
Methods: We conducted a cross-case comparison of four multiple-case studies into hospital care. To cover a broad array of focus, different specialty fields were selected. Each study investigated the organizational context, the degree of focus, and the operational performance. Focus was measured using an instrument translated from industry. Data were collected using both qualitative and quantitative methods and included site visits. A descriptive analysis was performed at the case study and cross-case studies level. - \ud
\ud
Results: The operational performance per specialty field varied considerably, even when cases showed comparable degrees of focus. Cross-case comparison showed three focus domains. The product domain considered specialty based focused factories that treated patients for a single-specialty, but did not pursue a specific strategy nor adapted work-designs or layouts. The process domain considered delivery based focused factories that treated multiple groups of patients and often pursued strategies to improve efficiency and timeliness and adapted work-designs and physical layouts to minimize delays. The product-process domain considered procedure based focused factories that treated a single well-defined group of patients offering one type of treatment. The strategic focusing decisions and the design of the care delivery system appeared especially important for delivery and procedure based focused factories. - \ud
\ud
Conclusions: Focus in hospital care relates to limitations on the patient group treated and the range of services offered. Based on these two dimensions, we identified three types of focused factories: specialty based, delivery based, and procedure based. Focus could lead to better operational performance, but only when clear strategic focusing decisions are made
Microneedle Array Design Determines the Induction of Protective Memory CD8+ T Cell Responses Induced by a Recombinant Live Malaria Vaccine in Mice
BACKGROUND: Vaccine delivery into the skin has received renewed interest due to ease of access to the immune system and microvasculature, however the stratum corneum (SC), must be breached for successful vaccination. This has been achieved by removing the SC by abrasion or scarification or by delivering the vaccine intradermally (ID) with traditional needle-and-syringes or with long microneedle devices. Microneedle patch-based transdermal vaccine studies have predominantly focused on antibody induction by inactivated or subunit vaccines. Here, our principal aim is to determine if the design of a microneedle patch affects the CD8(+) T cell responses to a malaria antigen induced by a live vaccine. METHODOLOGY AND FINDINGS: Recombinant modified vaccinia virus Ankara (MVA) expressing a malaria antigen was percutaneously administered to mice using a range of silicon microneedle patches, termed ImmuPatch, that differed in microneedle height, density, patch area and total pore volume. We demonstrate that microneedle arrays that have small total pore volumes induce a significantly greater proportion of central memory T cells that vigorously expand to secondary immunization. Microneedle-mediated vaccine priming induced significantly greater T cell immunity post-boost and equivalent protection against malaria challenge compared to ID vaccination. Notably, unlike ID administration, ImmuPatch-mediated vaccination did not induce inflammatory responses at the site of immunization or in draining lymph nodes. CONCLUSIONS/SIGNIFICANCE: This study demonstrates that the design of microneedle patches significantly influences the magnitude and memory of vaccine-induced CD8(+) T cell responses and can be optimised for the induction of desired immune responses. Furthermore, ImmuPatch-mediated delivery may be of benefit to reducing unwanted vaccine reactogenicity. In addition to the advantages of low cost and lack of pain, the development of optimised microneedle array designs for the induction of T cell responses by live vaccines aids the development of solutions to current obstacles of immunization programmes
A defect in myoblast fusion underlies Carey-Fineman-Ziter syndrome
Multinucleate cellular syncytial formation is a hallmark of skeletal muscle differentiation. Myomaker, encoded by Mymk (Tmem8c), is a well-conserved plasma membrane protein required for myoblast fusion to form multinucleated myotubes in mouse, chick, and zebrafish. Here, we report that autosomal recessive mutations in MYMK (OMIM 615345) cause Carey-Fineman-Ziter syndrome in humans (CFZS; OMIM 254940) by reducing but not eliminating MYMK function. We characterize MYMK-CFZS as a congenital myopathy with marked facial weakness and additional clinical and pathologic features that distinguish it from other congenital neuromuscular syndromes. We show that a heterologous cell fusion assay in vitro and allelic complementation experiments in mymk knockdown and mymk insT/insT zebrafish in vivo can differentiate between MYMK wild type, hypomorphic and null alleles. Collectively, these data establish that MYMK activity is necessary for normal muscle development and maintenance in humans, and expand the spectrum of congenital myopathies to include cell-cell fusion deficits
Tumor Necrosis Factor α Inhibits Expression of the Iron Regulating Hormone Hepcidin in Murine Models of Innate Colitis
Background: Abnormal expression of the liver peptide hormone hepcidin, a key regulator of iron homeostasis, contributes to the pathogenesis of anemia in conditions such as inflammatory bowel disease (IBD). Since little is known about the mechanisms that control hepcidin expression during states of intestinal inflammation, we sought to shed light on this issue using mouse models. Methodology/Principal Findings: Hepcidin expression was evaluated in two types of intestinal inflammation caused by innate immune activation—dextran sulfate sodium (DSS)-induced colitis in wild-type mice and the spontaneous colitis occurring in T-bet/Rag2-deficient (TRUC) mice. The role of tumor necrosis factor (TNF) was investigated by in vivo neutralization, and by treatment of a hepatocyte cell line, as well as mice, with the recombinant cytokine. Expression and activation of Smad1, a positive regulator of hepcidin transcription, were assessed during colitis and following administration or neutralization of TNF. Hepcidin expression progressively decreased with time during DSS colitis, correlating with changes in systemic iron distribution. TNF inhibited hepcidin expression in cultured hepatocytes and non-colitic mice, while TNF neutralization during DSS colitis increased it. Similar results were obtained in TRUC mice. These effects involved a TNF-dependent decrease in Smad1 protein but not mRNA. Conclusions/Significance: TNF inhibits hepcidin expression in two distinct types of innate colitis, with down-regulation of Smad1 protein playing an important role in this process. This inhibitory effect of TNF may be superseded by other factors in the context of T cell-mediated colitis given that in the latter form of intestinal inflammation hepcidin is usually up-regulated
- …