17 research outputs found

    Biophysical connectivity explains population genetic structure in a highly dispersive marine species

    Get PDF
    © 2016 Springer-Verlag Berlin Heidelberg Connectivity, the exchange of individuals among locations, is a fundamental ecological process that explains how otherwise disparate populations interact. For most marine organisms, dispersal occurs primarily during a pelagic larval phase that connects populations. We paired population structure from comprehensive genetic sampling and biophysical larval transport modeling to describe how spiny lobster (Panulirus argus) population differentiation is related to biological oceanography. A total of 581 lobsters were genotyped with 11 microsatellites from ten locations around the greater Caribbean. The overall FST of 0.0016 (P = 0.005) suggested low yet significant levels of structuring among sites. An isolation by geographic distance model did not explain spatial patterns of genetic differentiation in P. argus (P = 0.19; Mantel r = 0.18), whereas a biophysical connectivity model provided a significant explanation of population differentiation (P = 0.04; Mantel r = 0.47). Thus, even for a widely dispersing species, dispersal occurs over a continuum where basin-wide larval retention creates genetic structure. Our study provides a framework for future explorations of wide-scale larval dispersal and marine connectivity by integrating empirical genetic research and probabilistic modeling

    A Galaxy-based bioinformatics pipeline for optimised, streamlined microsatellite development from Illumina next-generation sequencing data

    Get PDF
    © 2016, The Author(s). Microsatellites are useful tools for ecologists and conservationist biologists, but are taxa-specific and traditionally expensive and time-consuming to develop. New methods using next-generation sequencing (NGS) have reduced these problems, but the plethora of software available for processing NGS data may cause confusion and difficulty for researchers new to the field of bioinformatics. We developed a bioinformatics pipeline for microsatellite development from Illumina paired-end sequences, which is packaged in the open-source bioinformatics tool Galaxy. This optimises and streamlines the design of a microsatellite panel and provides a user-friendly graphical user interface. The pipeline utilises existing programs along with our own novel program and wrappers to: quality-filter and trim reads (Trimmomatic); generate sequence quality reports (FastQC); identify potentially-amplifiable microsatellite loci (Pal_finder); design primers (Primer3); assemble pairs of reads to enhance marker amplification success rates (PANDAseq); and filter optimal loci (Pal_filter). The complete pipeline is freely available for use via a pre-configured Galaxy instance, accessible at https://palfinder.ls.manchester.ac.uk

    Bringing analysis of gender and social–ecological resilience together in small-scale fisheries research: Challenges and opportunities

    Get PDF
    The demand for gender analysis is now increasingly orthodox in natural resource programming, including that for small-scale fisheries. Whilst the analysis of social–ecological resilience has made valuable contributions to integrating social dimensions into research and policy-making on natural resource management, it has so far demonstrated limited success in effectively integrating considerations of gender equity. This paper reviews the challenges in, and opportunities for, bringing a gender analysis together with social–ecological resilience analysis in the context of small-scale fisheries research in developing countries. We conclude that rather than searching for a single unifying framework for gender and resilience analysis, it will be more effective to pursue a plural solution in which closer engagement is fostered between analysis of gender and social-ecological resilience whilst preserving the strengths of each approach. This approach can make an important contribution to developing a better evidence base for small-scale fisheries management and policy

    Environmental Impacts and Scarcity Perception Influence Local Institutions in Indigenous Amazonian Kichwa Communities

    No full text
    Much of the literature on common-pool resources has focused on elucidating the social mechanisms and local institutions that lead to the regulation of common-pool resources. There is much less information about how management regimes translate into environmental impacts or how environmental impacts influence the emergence of management decisions. We use quantitative and qualitative methods to investigate the link between forest condition, agricultural change and the emergence of common-pool resource management regimes in two indigenous Kichwa communities in the Ecuadorian Amazon. We show that forest condition is linked to agricultural production and that the perception of common-pool resource scarcity influences the emergence of management regimes. We argue that population pressure, market forces and resource scarcity, which are usually associated with measures of agricultural change can also promote the emergence of common-pool resource management regimes
    corecore