29 research outputs found

    Prevalence and sociodemographic correlates of stunting, underweight, and overweight among Palestinian school adolescents (13-15 years) in two major governorates in the West Bank

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>There is little information about height and weight status of Palestinian adolescents. The objective of this paper was to assess the prevalence of stunting, underweight, and overweight/obesity among Palestinian school adolescents (13-15 years) and associated sociodemographic factors in 2 major governorates in the West Bank.</p> <p>Methods</p> <p>A Cross-sectional survey was conducted in 2005 comprising 1942 students in 65 schools in Ramallah and Hebron governorates. Data was collected through self-administered questionnaires from students and parents. Weights and heights were measured. Overweight and obesity were assessed using the 2000 Centers for Disease Control and Prevention (CDC) reference and the International Obesity Task Force (IOTF) criteria. Stunting and underweight were assessed using the 2000 CDC reference.</p> <p>Results</p> <p>Overweight/obesity was more prevalent in Ramallah than in Hebron and affected more girls than boys. Using the 2000 CDC reference, the prevalence of overweight and obesity in Ramallah among boys was 9.6% and 8.2%, respectively versus 15.6% and 6.0% among girls (P < 0.01). In Hebron, the corresponding figures were 8.5% and 4.9% for boys and 13.5% and 3.4% for girls (P < 0.01). Using the IOTF criteria, the prevalence of overweight and obesity among boys in Ramallah was 13.3% and 5.2%, respectively versus 18.9% and 3.3% for girls. The prevalence of overweight and obesity among boys in Hebron was 10.9% and 2.2%, respectively versus 14.9% and 2.0% for girls. Overweight/obesity was associated with high standard of living (STL) among boys and with the onset of puberty among girls. More boys were underweight than girls, and the prevalence was higher in Hebron (12.9% and 6.0% in boys and girls, respectively (P < 0.01)) than in Ramallah (9.7% and 3.1% in boys and girls, respectively (p < 0.01)). The prevalence of stunting was similar in both governorates, and was higher among boys (9.2% and 9.4% in Ramallah and Hebron, respectively) than among girls (5.9% and 4.2% in Ramallah and Hebron, respectively). Stunting was negatively associated with father's education among boys and with urban residence, medium STL and onset of puberty among girls.</p> <p>Conclusion</p> <p>Under- and overnutrition co-exist among Palestinian adolescents, with differences between sexes. Region, residence, STL, and onset of puberty were associated factors.</p

    Malaria and Helminth Co-infections in School and Preschool Children: A Cross-sectional Study in Magu district, north-Western Tanzania.

    Get PDF
    Malaria, schistosomiasis and soil transmitted helminth infections (STH) are important parasitic infections in Sub-Saharan Africa where a significant proportion of people are exposed to co-infections of more than one parasite. In Tanzania, these infections are a major public health problem particularly in school and pre-school children. The current study investigated malaria and helminth co-infections and anaemia in school and pre-school children in Magu district, Tanzania. School and pre-school children were enrolled in a cross-sectional study. Stool samples were examined for Schistosoma mansoni and STH infections using Kato Katz technique. Urine samples were examined for Schistosoma haematobium using the urine filtration method. Blood samples were examined for malaria parasites and haemoglobin concentrations using the Giemsa stain and Haemoque methods, respectively. Out of 1,546 children examined, 1,079 (69.8%) were infected with one or more parasites. Malaria-helminth co-infections were observed in 276 children (60% of all children with P. falciparum infection). Malaria parasites were significantly more prevalent in hookworm infected children than in hookworm free children (p = 0.046). However, this association was non-significant on multivariate logistic regression analysis (OR = 1.320, p = 0.064). Malaria parasite density decreased with increasing infection intensity of S. mansoni and with increasing number of co-infecting helminth species. Anaemia prevalence was 34.4% and was significantly associated with malaria infection, S. haematobium infection and with multiple parasite infections. Whereas S. mansoni infection was a significant predictor of malaria parasite density, P. falciparum and S. haematobium infections were significant predictors of anaemia. These findings suggest that multiple parasite infections are common in school and pre-school children in Magu district. Concurrent P. falciparum, S. mansoni and S. haematobium infections increase the risk of lower Hb levels and anaemia, which in turn calls for integrated disease control interventions. The associations between malaria and helminth infections detected in this study need further investigation

    Geographical information system and predictive risk maps of urinary schistosomiasis in Ogun State, Nigeria

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The control of urinary schistosomiasis in Ogun State, Nigeria remains inert due to lack of reliable data on the geographical distribution of the disease and the population at risk. To help in developing a control programme, delineating areas of risk, geographical information system and remotely sensed environmental images were used to developed predictive risk maps of the probability of occurrence of the disease and quantify the risk for infection in Ogun State, Nigeria.</p> <p>Methods</p> <p>Infection data used were derived from carefully validated morbidity questionnaires among primary school children in 2001–2002, in which school children were asked among other questions if they have experienced "blood in urine" or urinary schistosomiasis. The infection data from 1,092 schools together with remotely sensed environmental data such as rainfall, vegetation, temperature, soil-types, altitude and land cover were analysis using binary logistic regression models to identify environmental features that influence the spatial distribution of the disease. The final regression equations were then used in Arc View 3.2a GIS software to generate predictive risk maps of the distribution of the disease and population at risk in the state.</p> <p>Results</p> <p>Logistic regression analysis shows that the only significant environmental variable in predicting the presence and absence of urinary schistosomiasis in any area of the State was Land Surface Temperature (LST) (B = 0.308, p = 0.013). While LST (B = -0.478, p = 0.035), rainfall (B = -0.006, p = 0.0005), ferric luvisols (B = 0.539, p = 0.274), dystric nitosols (B = 0.133, p = 0.769) and pellic vertisols (B = 1.386, p = 0.008) soils types were the final variables in the model for predicting the probability of an area having an infection prevalence equivalent to or more than 50%. The two predictive risk maps suggest that urinary schistosomiasis is widely distributed and occurring in all the Local Government Areas (LGAs) in State. The high-risk areas (≥ 50% prevalence) however, are confined to scatter foci in the north western part of the State. The model also estimated that 98.99% of schools aged children (5–14 years) are living in areas suitable for urinary schistosomiasis transmission and are at risk of infection.</p> <p>Conclusion</p> <p>The risk maps developed will hopefully be useful to the state health officials, by providing them with detailed distribution of urinary schistosomiasis, help to delineate areas for intervention, assesses population at risk thereby helping in optimizing scarce resources.</p

    The Synergistic Effect of Concomitant Schistosomiasis, Hookworm, and Trichuris Infections on Children's Anemia Burden

    Get PDF
    Polyparasitic infections have been recognized as the norm in many tropical developing countries, but the significance of this phenomenon for helminth-associated morbidities is largely unexplored. Earlier studies have suggested that multi-species, low-intensity parasitic infections were associated with higher odds of anemia among school-age children relative to their uninfected counterparts or those with one low-intensity infection. However, specific studies of the nature of interactions between helminth species in the mediation of helminth-associated morbidities are lacking. This study quantifies the extent to which polyparasitic infections have more than the sum of adverse effects associated with individual infections in the context of childhood anemia. This study found that the risk of anemia is amplified beyond the sum of risks for individual infections in children simultaneously exposed to 1) hookworm and schistosomiasis, and 2) hookworm and trichuris, and suggests that combined treatment for some geohelminth species and schistosomiasis could yield greater than additive benefits for the reduction of childhood anemia in helminth-endemic areas. However, more studies to understand the full range of interactions between parasitic species in their joint effects on helminth-associated morbidities will be necessary to better predict the impact of any future public health intervention

    Spatial distribution and risk factors of Schistosoma haematobium and hookworm infections among schoolchildren in Kwale, Kenya

    Get PDF
    Background: Large-scale schistosomiasis control programs are implemented in regions with diverse social and economic environments. A key epidemiological feature of schistosomiasis is its small-scale heterogeneity. Locally profiling disease dynamics including risk factors associated with its transmission is essential for designing appropriate control programs. To determine spatial distribution of schistosomiasis and its drivers, we examined schoolchildren in Kwale, Kenya. Methodology/Principal findings: We conducted a cross-sectional study of 368 schoolchildren from six primary schools. Soil-transmitted helminths and Schistosoma mansoni eggs in stool were evaluated by the Kato-Katz method. We measured the intensity of Schistosoma haematobium infection by urine filtration. The geometrical mean intensity of S. haematobium was 3.1 eggs/10 ml urine (school range, 1.4?9.2). The hookworm geometric mean intensity was 3.2 eggs/g feces (school range, 0?17.4). Heterogeneity in the intensity of S. haematobium and hookworm infections was evident in the study area. To identify factors associated with the intensity of helminth infections, we utilized negative binomial generalized linear mixed models. The intensity of S. haematobium infection was associated with religion and socioeconomic status (SES), while that of hookworm infection was related to SES, sex, distance to river and history of anthelmintic treatment. Conclusions/Significance: Both S. haematobium and hookworm infections showed micro-geographical heterogeneities in this Kwale community. To confirm and explain our observation of high S. haematobium risk among Muslims, further extensive investigations are necessary. The observed small scale clustering of the S. haematobium and hookworm infections might imply less uniform strategies even at finer scale for efficient utilization of limited resources

    Predicting the distribution of urinary schistosomiasis in Tanzania using satellite sensor data.

    No full text
    In this paper, remotely sensed (RS) satellite sensor environmental data, using logistic regression, are used to develop prediction maps of the probability of having infection prevalence exceeding 50%, and warranting mass treatment according to World Health Organization (WHO) guidelines. The model was developed using data from one area of coastal Tanzania and validated with independent data from different areas of the country. Receiver operating characteristic (ROC) analysis was used to evaluate the model's predictive performance. The model allows reasonable discrimination between high and low prevalence schools, at least within those geographical areas in which they were originally developed, and performs reasonably well in other coastal areas, but performs poorly by comparison in the Great Lakes area of Tanzania. These results may be explained by reference to an ecological zone map based on RS-derived environmental data. This map suggests that areas where the model reliably predicts a high prevalence of schistosomiasis fall within the same ecological zone, which has common intermediate-host snail species responsible for transmission. By contrast, the model's performance is poor near Lake Victoria, which is in a different ecological zone with different snail species. The ecological map can potentially define a template for those areas where existing models can be applied, and highlight areas where further data and models are required. The developed model was then used to provide estimates of the number of schoolchildren at risk of high prevalence and associated programme costs
    corecore