3,225 research outputs found

    Impaired function of endothelial progenitor cells in children with primary systemic vasculitis

    Get PDF
    INTRODUCTION: Previously, we demonstrated that children with active systemic vasculitis (SV) have higher circulating CD34 + CD133 + KDR+ endothelial progenitor cells (EPC); the function of these EPCs, and their relationship with disease activity in vasculitis remains largely unexplored. We hypothesized that although EPC numbers are higher, EPC function is impaired in active SV of the young. The aims of this study were therefore to: 1. investigate the relationship between disease activity and EPC function in children with SV; and 2. study the influence of systemic inflammation on EPC function by investigating the effects of hyperthermia and TNF-α on EPC function. METHODS: We performed a cross-sectional study of unselected children with SV with different levels of disease activity attending a single center (Great Ormond Street Hospital, London) between October 2008 and December 2014. EPCs were isolated from peripheral blood of children with SV, and healthy child controls. EPC function was assessed by their potential to form colonies (EPC-CFU), and ability to form clusters and incorporate into human umbilical vein endothelial cell (HUVEC) vascular structures in matrigel. The effects of hyperthermia and TNF-α on EPC function were also studied. RESULTS: Twenty children, median age 12-years (5-16.5; nine males) were studied. EPC-CFU and the number of EPC clusters formed on matrigel were significantly reduced in children with active vasculitis compared with healthy controls (p = 0.02 for EPC-CFU; p = 0.01 for EPC cluster formation). Those with active vasculitis had lower EPC-CFU and EPC cluster formation than those with inactive disease, although non-significantly so. In addition, EPC incorporation into matrigel HUVEC networks was lower in children with SV compared with healthy children, irrespective of disease activity. Ex-vivo pre-treatment of EPC with hyperthermia impaired EPC function; TNF-α down-regulated EPC expression of CD18/CD11b and resulted in decreased incorporation into HUVEC networks. CONCLUSIONS: Whilst our previous work showed that circulating CD34 + EPC numbers are well preserved, this study revealed that EPC function is significantly impaired in children with vasculitis. It is possible that the chronic inflammatory milieu associated with vasculitis may impair EPC function, and thus contribute to an unfavourable balance between endothelial injury and repair. The mechanism of this remains to be established, however

    The Sec1/Munc18 protein Vps45 regulates cellular levels of its SNARE binding partners Tlg2 and Snc2 in Saccharomyces cerevisiae

    Get PDF
    Intracellular membrane trafficking pathways must be tightly regulated to ensure proper functioning of all eukaryotic cells. Central to membrane trafficking is the formation of specific SNARE (soluble N-ethylmeleimide-sensitive factor attachment protein receptor) complexes between proteins on opposing lipid bilayers. The Sec1/Munc18 (SM) family of proteins play an essential role in SNARE-mediated membrane fusion, and like the SNAREs are conserved through evolution from yeast to humans. The SM protein Vps45 is required for the formation of yeast endosomal SNARE complexes and is thus essential for traffic through the endosomal system. Here we report that, in addition to its role in regulating SNARE complex assembly, Vps45 regulates cellular levels of its SNARE binding partners: the syntaxin Tlg2 and the v-SNARE Snc2: Cells lacking Vps45 have reduced cellular levels of Tlg2 and Snc2; and elevation of Vps45 levels results in concomitant increases in the levels of both Tlg2 and Snc2. As well as regulating traffic through the endosomal system, the Snc v-SNAREs are also required for exocytosis. Unlike most vps mutants, cells lacking Vps45 display multiple growth phenotypes. Here we report that these can be reversed by selectively restoring Snc2 levels in vps45 mutant cells. Our data indicate that as well as functioning as part of the machinery that controls SNARE complex assembly, Vps45 also plays a key role in determining the levels of its cognate SNARE proteins; another key factor in regulation of membrane traffic

    A Paclitaxel-Eluting Stent for the Prevention of Coronary Restenosis

    Get PDF
    Background Intimal hyperplasia and resulting restenosis limit the efficacy of coronary stenting. We studied a coronary stent coated with the antiproliferative agent paclitaxel as a means of preventing restenosis. Methods We conducted a multicenter, randomized, controlled, triple-blind study to evaluate the ability of a paclitaxel-eluting stent to inhibit restenosis. At three centers, 177 patients with discrete coronary lesions (<15 mm in length, 2.25 to 3.5 mm in diameter) underwent implantation of paclitaxel-eluting stents (low dose, 1.3 ”g per square millimeter, or high dose, 3.1 ”g per square millimeter) or control stents. Antiplatelet therapies included aspirin with ticlopidine (120 patients), clopidogrel (18 patients), or cilostazol (37 patients). Clinical follow-up was performed at one month and four to six months, and angiographic follow-up at four to six months. Results Technical success was achieved in 99 percent of the patients (176 of 177). At follow-up, the high-dose group, as compared with the control group, had significantly better results for the degree of stenosis (mean [±SD], 14±21 percent vs. 39±27 percent; P<0.001), late loss of luminal diameter (0.29±0.72 mm vs. 1.04±0.83 mm, P<0.001), and restenosis of more than 50 percent (4 percent vs. 27 percent, P<0.001). Intravascular ultrasound analysis demonstrated a dose-dependent reduction in the volume of intimal hyperplasia (31, 18, and 13 mm3, in the high-dose, low-dose, and control groups, respectively). There was a higher rate of major cardiac events in patients receiving cilostazol than in those receiving ticlopidine or clopidogrel. Among patients receiving ticlopidine or clopidogrel, event-free survival was 98 percent and 100 percent in the high-dose and control groups, respectively, at one month, and 96 percent in both at four to six months. Conclusions Paclitaxel-eluting stents used with conventional antiplatelet therapy effectively inhibit restenosis and neointimal hyperplasia, with a safety profile similar to that of standard stents.published_or_final_versio

    Simulating quantum statistics with entangled photons: a continuous transition from bosons to fermions

    Get PDF
    In contrast to classical physics, quantum mechanics divides particles into two classes-bosons and fermions-whose exchange statistics dictate the dynamics of systems at a fundamental level. In two dimensions quasi-particles known as 'anyons' exhibit fractional exchange statistics intermediate between these two classes. The ability to simulate and observe behaviour associated to fundamentally different quantum particles is important for simulating complex quantum systems. Here we use the symmetry and quantum correlations of entangled photons subjected to multiple copies of a quantum process to directly simulate quantum interference of fermions, bosons and a continuum of fractional behaviour exhibited by anyons. We observe an average similarity of 93.6\pm0.2% between an ideal model and experimental observation. The approach generalises to an arbitrary number of particles and is independent of the statistics of the particles used, indicating application with other quantum systems and large scale application.Comment: 10 pages, 5 figure

    A plastid two-pore channel essential for inter-organelle communication and growth of Toxoplasma gondii.

    Get PDF
    Two-pore channels (TPCs) are a ubiquitous family of cation channels that localize to acidic organelles in animals and plants to regulate numerous Ca2+-dependent events. Little is known about TPCs in unicellular organisms despite their ancient origins. Here, we characterize a TPC from Toxoplasma gondii, the causative agent of toxoplasmosis. TgTPC is a member of a novel clad of TPCs in Apicomplexa, distinct from previously identified TPCs and only present in coccidians. We show that TgTPC localizes not to acidic organelles but to the apicoplast, a non-photosynthetic plastid found in most apicomplexan parasites. Conditional silencing of TgTPC resulted in progressive loss of apicoplast integrity, severely affecting growth and the lytic cycle. Isolation of TPC null mutants revealed a selective role for TPCs in replication independent of apicoplast loss that required conserved residues within the pore-lining region. Using a genetically-encoded Ca2+ indicator targeted to the apicoplast, we show that Ca2+ signals deriving from the ER but not from the extracellular space are selectively transmitted to the lumen. Deletion of the TgTPC gene caused reduced apicoplast Ca2+ uptake and membrane contact site formation between the apicoplast and the ER. Fundamental roles for TPCs in maintaining organelle integrity, inter-organelle communication and growth emerge

    Selective targeting of activating and inhibitory Smads by distinct WWP2 ubiquitin ligase isoforms differentially modulates TGFÎČ signalling and EMT

    Get PDF
    Ubiquitin-dependent mechanisms have emerged as essential regulatory elements controlling cellular levels of Smads and TGFß-dependent biological outputs such as epithelial–mesenchymal transition (EMT). In this study, we identify a HECT E3 ubiquitin ligase known as WWP2 (Full-length WWP2-FL), together with two WWP2 isoforms (N-terminal, WWP2-N; C-terminal WWP2-C), as novel Smad-binding partners. We show that WWP2-FL interacts exclusively with Smad2, Smad3 and Smad7 in the TGFß pathway. Interestingly, the WWP2-N isoform interacts with Smad2 and Smad3, whereas WWP2-C interacts only with Smad7. In addition, WWP2-FL and WWP2-C have a preference for Smad7 based on protein turnover and ubiquitination studies. Unexpectedly, we also find that WWP2-N, which lacks the HECT ubiquitin ligase domain, can also interact with WWP2-FL in a TGFß-regulated manner and activate endogenous WWP2 ubiquitin ligase activity causing degradation of unstimulated Smad2 and Smad3. Consistent with our protein interaction data, overexpression and knockdown approaches reveal that WWP2 isoforms differentially modulate TGFß-dependent transcription and EMT. Finally, we show that selective disruption of WWP2 interactions with inhibitory Smad7 can stabilise Smad7 protein levels and prevent TGFß-induced EMT. Collectively, our data suggest that WWP2-N can stimulate WWP2-FL leading to increased activity against unstimulated Smad2 and Smad3, and that Smad7 is a preferred substrate for WWP2-FL and WWP2-C following prolonged TGFß stimulation. Significantly, this is the first report of an interdependent biological role for distinct HECT E3 ubiquitin ligase isoforms, and highlights an entirely novel regulatory paradigm that selectively limits the level of inhibitory and activating Smads

    Robust estimation of microbial diversity in theory and in practice

    Get PDF
    Quantifying diversity is of central importance for the study of structure, function and evolution of microbial communities. The estimation of microbial diversity has received renewed attention with the advent of large-scale metagenomic studies. Here, we consider what the diversity observed in a sample tells us about the diversity of the community being sampled. First, we argue that one cannot reliably estimate the absolute and relative number of microbial species present in a community without making unsupported assumptions about species abundance distributions. The reason for this is that sample data do not contain information about the number of rare species in the tail of species abundance distributions. We illustrate the difficulty in comparing species richness estimates by applying Chao's estimator of species richness to a set of in silico communities: they are ranked incorrectly in the presence of large numbers of rare species. Next, we extend our analysis to a general family of diversity metrics ("Hill diversities"), and construct lower and upper estimates of diversity values consistent with the sample data. The theory generalizes Chao's estimator, which we retrieve as the lower estimate of species richness. We show that Shannon and Simpson diversity can be robustly estimated for the in silico communities. We analyze nine metagenomic data sets from a wide range of environments, and show that our findings are relevant for empirically-sampled communities. Hence, we recommend the use of Shannon and Simpson diversity rather than species richness in efforts to quantify and compare microbial diversity.Comment: To be published in The ISME Journal. Main text: 16 pages, 5 figures. Supplement: 16 pages, 4 figure

    Optimal quantum cloning of orbital angular momentum photon qubits via Hong-Ou-Mandel coalescence

    Full text link
    The orbital angular momentum (OAM) of light, associated with a helical structure of the wavefunction, has a great potential for quantum photonics, as it allows attaching a higher dimensional quantum space to each photon. Hitherto, however, the use of OAM has been hindered by its difficult manipulation. Here, exploiting the recently demonstrated spin-OAM information transfer tools, we report the first observation of the Hong-Ou-Mandel coalescence of two incoming photons having nonzero OAM into the same outgoing mode of a beam-splitter. The coalescence can be switched on and off by varying the input OAM state of the photons. Such effect has been then exploited to carry out the 1 \rightarrow 2 universal optimal quantum cloning of OAM-encoded qubits, using the symmetrization technique already developed for polarization. These results are finally shown to be scalable to quantum spaces of arbitrary dimension, even combining different degrees of freedom of the photons.Comment: 5 pages, 3 figure

    Transcriptional activation of hypoxia-inducible factor-1 (HIF-1) in myeloid cells promotes angiogenesis through VEGF and S100A8

    Get PDF
    Emerging evidence indicates that myeloid cells are essential for promoting new blood vessel formation by secreting various angiogenic factors. Given that hypoxia-inducible factor (HIF) is a critical regulator for angiogenesis, we questioned whether HIF in myeloid cells also plays a role in promoting angiogenesis. To address this question, we generated a unique strain of myeloid-specific knockout mice targeting HIF pathways using human S100A8 as a myeloid-specific promoter. We observed that mutant mice where HIF-1 is transcriptionally activated in myeloid cells (by deletion of the von Hippel-Lindau gene) resulted in erythema, enhanced neovascularization in matrigel plugs, and increased production of vascular endothelial growth factor (VEGF) in the bone marrow, all of which were completely abrogated by either genetic or pharmacological inactivation of HIF-1. We further found that monocytes were the major effector producing VEGF and S100A8 proteins driving neovascularization in matrigel. Moreover, by using a mouse model of hindlimb ischemia we observed significantly improved blood flow in mice intramuscularly injected with HIF-1-activated monocytes. This study therefore demonstrates that HIF-1 activation in myeloid cells promotes angiogenesis through VEGF and S100A8 and that this may become an attractive therapeutic strategy to treat diseases with vascular defects.X1137Ysciescopu
    • 

    corecore