27 research outputs found

    Effects of gamma-ray irradiation on electronic and non-electronic equipment of Large Helical Device

    Get PDF
    In a deuterium operation on the Large Helical Device, the measurement and control equipment placed in the torus hall must survive under an environment of radiation. To study the effects of gamma-ray irradiation on the equipment, an irradiation experiment is performed at the Cobalt-60 irradiation facility of Nagoya University. Transient and permanent effects on a personal computer, media converters, programmable logic controllers, isolation amplifiers, a web camera, optical flow meters, and water sealing gaskets are experimentally surveyed. Transient noise appears on the web camera. Offset of the signal increases with an increase of the integrated dose on the programmable logic controller. The DeviceNet module on the programmable logic controller is broken at the integrated dose of 72 Gy, which is the expected range of the integrated dose of the torus hall. The other equipment can survive under the gamma-ray field in the torus hall

    Investigation of irradiation effects on highly integrated leading-edge electronic components of diagnostics and control systems for LHD deuterium operation

    Get PDF
    High-temperature and high-density plasmas are achieved by means of real-time control, fast diagnostic, and high-power heating systems. Those systems are precisely controlled via highly integrated electronic components, but can be seriously affected by radiation damage. Therefore, the effects of irradiation on currently used electronic components should be investigated for the control and measurement of Large Helical Device (LHD) deuterium plasmas. For the precise estimation of the radiation field in the LHD torus hall, the MCNP6 code is used with the cross-section library ENDF B-VI. The geometry is modeled on the computer-aided design. The dose on silicon, which is a major ingredient of electronic components, over nine years of LHD deuterium operation shows that the gamma-ray contribution is dominant. Neutron irradiation tests were performed in the OKTAVIAN at Osaka University and the Fast Neutron Laboratory at Tohoku University. Gamma-ray irradiation tests were performed at the Nagoya University Cobalt-60 irradiation facility. We found that there are ethernet connection failures of programmable logic controller (PLC) modules due to neutron irradiation with a neutron flux of 3  ×  106 cm−2 s−1. This neutron flux is equivalent to that expected at basement level in the LHD torus hall without a neutron shield. Most modules of the PLC are broken around a gamma-ray dose of 100 Gy. This is comparable with the dose in the LHD torus hall over nine years. If we consider the dose only, these components may survive more than nine years. For the safety of the LHD operation, the electronic components in the torus hall have been rearranged

    Notch Filter in 70 GHz Range for Microwave Plasma Diagnostics

    Get PDF
    A notch filter for the rejection of stray light from gigahertz range heating sources was developed to protect a vulnerable microwave plasma diagnostic system. As one of the applications, we consider the installation of the notch filter into the receiver of a collective Thomson scattering diagnostic in the Large Helical Device. Experimental observations indicate that two types of notch filters are required for main and spurious mode rejection; they have very narrow, steep shapes to avoid disturbing the diagnostic signal. On the basis of numerically simulated results, notch filters were fabricated, and their performance was evaluated. An attenuation level of 35 dB at 74.746 GHz with a 3 dB bandwidth of 0.49 GHz is achieved by two pairs of resonator cavities. This attenuation is acceptable in our study

    Application of Laser-Driven Monochromatic X-Ray to Radiobiology

    No full text

    Portable NPWT for PG

    Get PDF
    Pyoderma gangrenosum is a chronic non-infectious neutrophilic dermatosis that causes undermining ulcers. Topical therapies for the deep ulcers of pyoderma gangrenosum have not been established. To investigate whether negative-pressure wound therapy is effective for a pyoderma gangrenosum ulcer, we used the PICO single use negative-pressure wound therapy system (Smith & Nephew, London, UK) for two pyoderma gangrenosum patients. In these cases, the ulcers decreased in size and necrolytic tissue was removed notably. Moreover, there were no secondary infections nor was there Koebner phenomena. Our cases suggest that portable negative-pressure wound therapy can be a treatment option for deep, intractable ulcers caused by pyoderma gangrenosum. Because portable negative-pressure wound therapy devices afford increased mobility to patients, they can give the patient a better quality of life than standard negative-pressure wound therapy systems do

    Design of Neutron Spectrum-Shaping Assembly Around the Pneumatic Tube-End in the LHD Torus Hall for the Medical Research Application

    Get PDF
    The designs of neutron spectrum-shaping assembly (NSSA) composed with various shielding materials with natural isotopic abundance were evaluated to construct the neutron field dominated with thermal neutron or epi-thermal neutron for the application of neutron filed in the torus hall of LHD toward the BNCT research. According to the neutron transport calculation by MCNP6, the fast neutron moderation efficiency was higher in polyethylene (PE) compared to lithium fluoride (LiF) and magnesium fluoride (MF), although LiF showed relatively large epi-thermal and thermal neutron absorption. This comparison showed that the thermal neutron field can be effectively achieved with using PE. For constructing the NSSA which can provide the neutron field dominated with epi-thermal neutron, several NSSA designs were evaluated with respect to fast neutron flux, epi-thermal neutron flux, and gamma-ray dose. The combination of MF, lead (Pb) and cadmium (Cd) can provide the good epi-thermal neutron field with the mitigations of fast neutron flux and gamma-ray dose, which is also suitable for BNCT research in the torus hall of LHD

    A laser-plasma-produced soft X-ray laser at 89 eV generates DNA double-strand breaks in human cancer cells.

    No full text
    While it has been expected that X-ray laser will be widely applied to biomedical studies, this has not been achieved to date and its biological effects such as DNA damage have not been evaluated. As a first step for its biological application, we developed a culture cell irradiation system, particularly designed for a plasma-driven soft X-ray laser pulse, to investigate whether the soft X-ray laser is able to induce DNA double strand breaks (DSBs) in living cells or not. The human adenocarcimona cell line A549 was irradiated with the soft X-ray laser at a photon energy of 89 eV and the repair focus formation of the DSBs was assessed by immunofluorescence staining with antiphosphorylated DNA-PKcs (p-DNA-PKcs), ATM (p-ATM) and γ-H2AX antibody. The p-DNA-PKcs, ATM, and γ-H2AX foci were clearly identified after soft X-ray laser irradiation. Furthermore, the increase in the X-ray laser shot number, even from a single shot, results in the increase in p-DNA-PKcs foci. These results are the first evidence that the 89 eV soft X-ray laser is able to induce DSB in living cells. Our study demonstrated that this irradiation system is a useful tool for investigating the radiobiological effect of soft X-ray laser
    corecore