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Abstract. High-temperature and high-density plasmas are achieved by means of real time control, fast 

diagnostic, and high power heating systems. Those systems are precisely controlled by means of highly 

integrated electronic components. However, the radiation damage leads to serious impact on those systems. 

Therefore, the effects due to irradiation on electronic components being used currently should be investigated 

for control and measurement of Large Helical Device (LHD) deuterium plasmas. For precise estimation of the 

radiation field in the LHD torus hall, MCNP6 code is used with the cross-section library of ENDF B-VI. The 



geometry is modeled based on the CAD drawing. The dose on silicon, which is a major ingredient of electronics 

components, during the nine years of the LHD deuterium operation shows that the gamma-ray contributions are 

dominant in dose. Neutron irradiation tests are performed in the OKTAVIAN at Osaka University and the Fast 

Neutron Laboratory at Tohoku University. Also gamma-ray irradiation tests are performed in the Nagoya 

University Cobalt-60 irradiation facility. We found that there are Ethernet connection failures of programmable 

logic controller (PLC) modules due to neutron irradiation with neutron flux of 3×106 cm-2s-1. The neutron flux is 

equivalent to the flux expected at the basement level in the LHD torus hall without a neutron shield. Most 

modules of the PLC are broken around the gamma-ray dose of 100 Gy. This is comparable with the dose in the 

LHD torus hall over nine years. Finally, if we consider the dose only, these components may survive more than 

nine years. For the safety of the LHD operation, electronic components placed in the torus hall have been 

rearranged. 

1. Introduction 

High performance plasmas are achieved by means of real time control, fast diagnostic, and 

high power heating systems. Those systems are precisely controlled by means of transmission 

and highly integrated electronic components. However, the radiation damage due to neutron 

and/or gamma-ray may lead to serious impact on those systems. For example, due to the 

increase of background level of microchannel-plate electron multipliers (MCPs) by radiation, 

the dynamic range of an MCP detector reduces to the point of uselessness in TFTR [1]. In 

JET, numbers of dead pixels on imaging camera increased linearly as the increase of the 

neutron fluence [2]. To investigate the effect of neutrons or gamma-rays on those 

components, irradiation tests were intensively performed in the 1990s in irradiation facilities 

such as the Fusion Neutronics Source [3] at the Japan Atomic Energy Agency and 

OKTAVIAN [4] at Osaka University. It is reported that a programmable logic controller 

(PLC) was broken by 1000 Gy gamma-ray irradiation [5]. At present, though the radiation 

resistance of transmission components has not changed significantly, the radiation resistance 

of electronic components might change because of higher integration of integrated circuits 



compared with integrated circuits of more than 20 years ago. Deuterium operation will be 

started from 2017 on the Large Helical Device (LHD) and continues for nine years. LHD is 

controlled by means of many semiconductor integrated circuits placed around LHD in the 

torus hall with remote control capability. These circuits are regularly replaced with the newest 

highly-integrated circuit. The integration of the electronic circuit becomes higher, which 

means that the number of atoms inside one chip is reduced and the operational voltage inside 

the circuit becomes lower. Therefore, the damage due to a neutron and/or gamma-ray on an 

atom can easily cause a problem compared with the electronic circuit with lower integration. 

Thus, the circuits become weaker against the radiation because of the higher integration. 

Therefore, the effects due to irradiation on electronic components being used currently should 

be investigated for control and measurement of LHD deuterium plasmas. 

2. Neutron and gamma-ray transport calculation in LHD 

For precise estimation of the radiation field in the LHD torus hall, MCNP6 three-dimensional 

Monte-Carlo neutronics code [6] is used with the cross-section library of ENDF B-VI [7]. In 

the MCNP calculation geometry, the LHD components within the support structure are 

divided by small toroidal angle pitch, and the components are assumed to be toroidally 

symmetric in a toroidal pitch angle. The geometry in one toroidal pitch angle is modelled 

based on the CAD drawing with some simplification (Fig. 1). The neutron source is isotropic 

and homogeneous in the torus with the energy of 2.45 MeV. A three-dimensional map of the 

radiation field in the LHD torus hall has been obtained. Figure 2 a shows the neutron flux 

profile in the LHD torus hall and the profile in the basement level of the torus hall at the 

maximum neutron emission discharge (total neutron emission rate of 1.9×1016 s-1). It is found 

that the neutron flux in the torus hall, and the flux in the basement level are around 109 cm-2s-1 

and around 106 cm-2s-1, respectively. Figure 2 b shows the profiles of the dose on silicon (Si), 



which is a major ingredient of electronics components, during the nine years of the LHD 

deuterium operation. The gamma-ray contributions are dominant in dose. 

3. Neutron irradiation test 

To investigate the irradiation effect on electronic components used in the LHD torus hall, 

neutron irradiation tests are performed in the Fast Neutron Laboratory (FNL) at Tohoku 

University [10] and OKTAVIAN [11]. A PC, a media converter, an infrared (IR) camera, a 

multi-pixel photon counter (MPPC), a web camera, two avalanche photodiode (APDs), two 

photomultiplier tubes (PMTs), and PLCs are tested (Fig. 3). In the experiment performed in 

OKTAVIAN, the total neutron emission rate from the target is up to 9×108 s-1, therefore, the 

neutron flux at 5 cm away from the target, and the flux at 10 cm away from the target are up 

to 3×106 cm-2s-1 and 7×105 cm-2s-1, respectively. The neutron exposure has been performed 

for 11.5 hours. The neutron flux in this experiment is two or three orders smaller than the 

neutron flux in the LHD torus hall and in the same order as the neutron flux in the basement 

level of the torus hall. The status of all components is monitored remotely from the control 

room. The results of neutron exposure test are summarized in Table 1. Transient effects due to 

neutron irradiation are observed on a PC, an IR camera, a web camera, APDs, PMTs and a 

PLC. Disconnection of the network is observed on the PC at neutron flux of 3×105 cm-2s-1. 

The frequency of this effect is once per 11 hours. If we assume that the frequency increases 

linearly with the neutron flux, the PC placed in the torus hall without any shield will 

experience a disconnection of the network up to once per four shots at the maximum neutron 

emission discharge of LHD. Here, we assume that the frequency increases linearly because 

the both ionisation and displacement damage due to radiation on the semiconductor materials 

increase linearly with the radiation fluence [12]. Note that we classify the effect as transient 

because the disconnection of the network recovers due to the reboot. Temporal dead pixels 



due to neutrons appear on the IR camera (Fig. 4). We observed four dots per 3 hours at 

neutron flux of 7×105 cm-2s-1. Note that the temperature shown in dead pixels is always zero. 

The IR camera will be installed on the upper port of LHD where expected maximum neutron 

flux is 1010 cm-2s-1. If the number of dots linearly grows as neutron flux, the number of dead 

pixels due to neutrons will reach 2 dots per shot. Note that the effect is transient because the 

dead pixels due to neutrons recover due to reboot. The loss of the image is obtained on the 

web camera at the neutron flux of 3×106 cm-2s-1 whereas on the neutron flux of less than 

3×105 cm-2s-1 the image transfer has no problem. At first, green on the web camera disappears 

(Fig. 5), therefore, the movie completely disappears even though the connection between the 

web camera and a PC is stable. The effect is observed once per 11.5 hours, and the expected 

failure rate in the LHD torus hall is once per forty shots. In PMTs and APDs, we observed 

neutron-induced pulse with frequency of 23 Hz and 1.5 Hz, respectively. If we put the PMTs 

and APDs near LHD, where the neutron flux will be 1010 cm-2s-1, we will obtain neutron 

induced pulse with frequency of 115 kHz and 7.5 kHz, respectively. We observed neutron-

induced error at neutron flux of 3×106 cm-2s-1 whereas at neutron flux of 3×105 cm-2s-1 no 

error is observed on PLC modules. Neutron-induced errors occurred on the PLC three times 

per 9 hours (Fig. 6). The behaviour of the AC output module is different in each case. In the 

first case, the output voltage becomes zero when disconnection of the network occurs. 

However, the second time, the output voltage stays the same even though the network is 

disconnected. Moreover, the third time, the output voltage shows 10 V (maximum) when 

disconnection of the network occurs. Note that no permanent effect is observed in this 

experiment. 



4. Gamma-ray irradiation test 

Gamma-ray irradiation tests are performed in the Nagoya University Cobalt-60 irradiation 

facility [13]. A PC, two media converters, two optical flow meters, two isolation amplifiers, a 

web camera, and two PLCs were irradiated (Fig. 7). The gamma-ray dose rate to the silicon 

(Si), which is a major ingredient of electronics components, evaluated by calculation on the 

day of the experiment (2015/7/14) is 190 Gy/h at 20 cm from the source, 86 Gy/h at 30 cm 

from the source, and 30 Gy/h at 50 cm from the source. The results of gamma-ray exposure 

are summarized in Table 2. No transient effect is seen except for the web camera and the 

analog terminal of the PLC at the dose rate of 38 Gy/h. The PC is broken at the integrated 

gamma-ray dose of 224 Gy. The connection of two media converters is stable after the 

integration dose of 320 Gy. The signal of two optical flow meters is unchanged after the 

integration dose of 240 Gy. The output signal from the isolation amplifier is stable after the 

integration dose of 112 Gy. The dot noise due to gamma-ray is observed on web camera. This 

effect is only observed during the gamma-ray exposure. The output signal from PLC1 and 

PLC2 is monitored by a PC through the network. The increase of the offset of the analog 

output is observed from the beginning of the analog output from analog output module 

(DA04-IN) of PLC1 (Fig. 8). The output signal disappears when the integrated dose reaches 

86 Gy, because the connections between the PLC1 and the PC is broken. The mismatch of 

input and output signals is observed on analog output module (CS1W-DA08V) and Devicenet 

input module (CS1W-DRM21-V1) of PLC2 at 95 Gy (Fig. 9 a) whereas DA output and AD 

input signals are same (Fig. 9 b). Both signals disappear at 112 Gy because of CPU-module 

broke. We tried to reboot both PLCs by inserting and pulling out the power supply plug of the 

electric apparatus. However, there was no reaction from both PLCs. We found that modules 

of the PLC are broken around the dose of 100 Gy. This is comparable with the dose in the 

LHD torus hall over nine years, and the dose is one order smaller than the threshold of the 



PLC in the 1990s [5]. It is considered that short-circuits occur more easily by the ionization 

effect of radiation at the narrower electrode gap in the highly integrated devices. In previous 

data, transient effects are dominant in the electrical devices by gamma-ray irradiation. 

However, permanent damages have been observed in several digital devices, which is 

probably due to short-circuits at the narrow electrode gap. Also, radiolysis effects of gamma-

rays in the SiO2 layer such as a radiation induced electrical degradation (RIED) should be 

considered. 

5. Summary 

In summary, effects of neutron and gamma-ray exposure on electronic equipment currently 

used in the LHD torus hall are studied in OKTAVIAN, FNL, and Nagoya University Cobalt-

60 irradiation facility. The irradiation on PCs, media converters, the IR camera, an MPPC, 

web cameras, APDs, PMTs, PLCs, optical flow meters, and isolation amplifiers are 

performed. In neutron irradiation test, the disconnection of the network is observed on the PC 

at neutron flux of 3×105 cm-2s-1, and on the PLC at neutron flux of 3×106 cm-2s-1. This neutron 

flux is equivalent to the flux at the basement level of the LHD torus hall. The experiment also 

shows that there is no effect on the PLC on the neutron flux below 3×105 cm-2s-1. Neutron-

induced dead pixels are observed on the IR camera. These dots disappear due to reboot. 

Neutron-induced signal is observed on APDs and PMTs. The pulse rate of these detectors in 

the LHD torus hall will reach 7.5 kHz and 115 kHz, respectively, without a neutron shield. 

No effect is observed on the media converter and the MPPC at neutron flux of 3×105 cm-2s-1 

and neutron fluence of 8×109 cm-2. This neutron and gamma-ray irradiation test shows that 

highly integrated electronic components such as PLCs and PCs cannot be used in the torus 

hall without neutron shield, and equipment used in this experiment can survive nine years of 

deuterium operation in the torus hall if we consider the gamma-ray dose only, though the 



safety factor is low. Hence, we designed the neutron shield for the IR camera, and we moved 

PCs and PLCs as far as possible to the basement level of the torus hall and put several neutron 

shields made by the borated polyethylene for the safe operation of LHD deuterium 

experiments. 
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Fig. 1. MCNP Model of LHD. The figure is made with SuperMC [8, 9] 



 

Fig. 2 a). Neutron flux profile in the LHD torus hall. b). Dose profile for Si in the LHD torus hall. 



 

Fig.3 Arrangement of neutron irradiation test in OKTAVIAN. 



 

Fig.4 IR camera image taken (a) before neutron irradiation and (b) after neutron irradiation. 



 

Fig. 5 (a) Normal web camera image. (b) Green on web camera disappears due to neutron irradiation.  



 

Fig. 6. Time evolution of analog output signal of PLC1. (a) The output voltage becomes zero 
when disconnection of the network occurs. (b) The output voltage stays the same even 
though the network is disconnected. (c) The output voltage shows 10 V (maximum) when 
disconnection of the network occurs. 



 

Fig. 7. Arrangement of gamma-ray irradiation test in Nagoya University Cobalt-60 irradiation facility 



 

Fig. 8 Offset increase on analog output module due to gamma-ray irradiation. 



 

Fig. 9 (a) The mismatch of input and output signals is observed. (b) Both signals have same trend until 
PLC2 broken. 

 



TABLE 1. Summary neutron irradiation experiment on electronic equipment of LHD 

Component Manufacturer Model number 
Neutron 

flux 
[cm-2s-1] 

Neutron
fluence 
[cm-2] 

Transient 
effect 

Permanent 
effect 

PC 
Hewlett-
Packard 

HP Mini 5103 3×105 4×109 
Network 

disconnection 
(Once) 

Not observed 

Media converter D-Link DMC-700SC 7×105 8×109 Not observed Not observed 

IR camera Indigo Omega 7×105 8×109 Dots appeared Not observed 

MPPC 
Hamamatsu 
photonics 

C13366-
1350GA 

7×105 8×109 Not observed Not observed 

Web camera I-O DATA TS-WLCAM 3×106 3×1010 
Dots appeared 

(< 1 Hz) 
Not observed 

APD 
Hamamatsu 
photonics 

C12703-01 2×105 2×109 Pulse (1.5 Hz) Not observed 

PMT 
Hamamatsu 
photonics 

H10723-210 2×105 2×109 Pulse (23 Hz) Not observed 

P
L
C
1 

CPU 

YOKOGAWA 

PU10-0S 

3×106 3×1010 

Network 
disconnection 
(three times) 

Not observed 

Power SP71-4S Not observed Not observed 

Analog input AD04-0V Not observed Not observed 

Analog output DA04-1N Various effects Not observed 

P
L
C
2 

CPU 

OMRON 

CJ2M-CPU31 

3×105 4×109 

Not observed Not observed 

Power CJ1W-PA205C Not observed Not observed 

Analog output CJ1W-DA021 Not observed Not observed 

Analog input 
CJ1W-AD041-

V1 
Not observed Not observed 

Relay output CJ1W-MD231 Not observed Not observed 

24 V DC 
power 

S8VK-G01524 Not observed Not observed 

Analog 
terminal 

DRT2-AD04H Not observed Not observed 

I/O relay 
terminal input 

G7TC-ID16 Not observed Not observed 

I/O relay 
terminal 
output 

G7TC-OC16 Not observed Not observed 



TABLE 2. Summary of gamma-ray irradiation experiment on electronic equipment of LHD 

Component Manufacturer Model number 
Maximum 
dose (Gy) 

Transient 
effect 

Permanent effect 

PC 
Hewlett-
Packard 

HP Mini 5101 320 Not observed Broken (224 Gy) 

Media converter D-Link DMC-700SC 320 Not observed Not observed 

Optical flow meter 
TOKYO 
KEISO 

R-760-E 240 Not observed Not observed 

Isolation amplifier 
NF 

corporation 
P62-A 112 Not observed Not observed 

Web camera I-O DATA TS-WLCAM 112 Dots appeared Not observed 

P
L
C
1 

CPU 

YOKOGAWA 

PU10-0S 

112 

Not observed Broken (86 Gy) 

Power SP71-4S Not observed Not observed 

Analog input AD04-0V Not observed 
Offset increase 
Broken (86 Gy) 

Analog output DA04-1N Not observed Broken (86 Gy) 

P
L
C
2 

CPU 

OMRON 

CS1G-CPU42H 

112 

Not observed Not observed 

Power 
C200HW-
PA204S 

Not observed Broken (112 Gy) 

Base CS1W-BC083 Not observed Not observed 

Ethernet CS1W-ETN21 Not observed Broken (112 Gy) 

Devicenet 
input 

CS1W-
DRM21-V1 

Not observed Broken (95 Gy) 

Analog output CS1W-DA08V Not observed Not observed 

Analog input 
CS1W-AD08-

V1 
Not observed Not observed 

Relay output CS1W-OC201 Not observed Not observed 

24 V DC input CS1W-ID211 Not observed Not observed 

Analog 
terminal 

DRT2-AD04H Stopped Not observed 

MIL 
connector 

DRT2-
MD32ML 

Not observed Not observed 

I/O relay 
terminal input 

G7TC-ID16 Not observed Not observed 

I/O relay 
terminal 
output 

G7TC-OC16 Not observed Not observed 



 


