192 research outputs found

    Synthetic strategies towards fullerene-rich dendrimer assemblies

    Get PDF
    A review. The sphere-shaped fullerene has attracted considerable interest not least due to the peculiar electronic properties of this carbon allotrope and the fascinating materials emanating from fullerene-derived structures. The rapid development and tremendous advances in org. chem. allow nowadays the modification of C60 to a great extent by pure chem. means. It is therefore not surprising that the fullerene moiety has also been part of dendrimers. In recent years, also many research efforts have been devoted towards fullerene-rich nanohybrids contg. multiple C60 units in the branches and/or as surface functional groups. In this review, synthetic efforts towards the construction of dendritic fullerene-rich nanostructures have been compiled and will be summarized herein

    A photoresponsive graphene oxide-C60 conjugate

    Full text link
    [EN] An all-carbon donor–acceptor hybrid combining graphene oxide (GO) and C60 has been prepared. Laser flash photolysis measurements revealed the occurrence of photoinduced electron transfer from the GO electron donor to the C60 electron acceptor in the conjugate.This research was financially supported by the Spanish Ministry of Economy and Competitiveness of Spain (CTQ2010-17498, MAT2010-20843-C02-01 and PLE-2009-0038) and a Severo Ochoa operating grant from the Spanish Ministry of Economy and Competitiveness. We also acknowledge financial support from the Spanish Ministry of Economy and Competitiveness, Comunidad de Madrid (CAM 09-S2009_MAT-1467), Generalitat Valenciana (PROMETEO program), and VLC/Campus Microcluster "Nanomateriales Funcionales y Nanodispositivos".Barrejón, M.; Vizuete, M.; Gómez Escalonilla, M.; Fierro, J.; Berlanga, I.; Zamora, F.; Abellán, G.... (2014). A photoresponsive graphene oxide-C60 conjugate. Chemical Communications. 50(65):9053-9055. doi:10.1039/C3CC49589BS90539055506

    Two-stage directed self-assembly of a cyclic [3]catenane.

    Get PDF
    Interlocked molecules possess properties and functions that depend upon their intricate connectivity. In addition to the topologically trivial rotaxanes, whose structures may be captured by a planar graph, the topologically non-trivial knots and catenanes represent some of chemistry's most challenging synthetic targets because of the three-dimensional assembly necessary for their construction. Here we report the synthesis of a cyclic [3]catenane, which consists of three mutually interpenetrating rings, via an unusual synthetic route. Five distinct building blocks self-assemble into a heteroleptic triangular framework composed of two joined Fe(II)3L3 circular helicates. Subcomponent exchange then enables specific points in the framework to be linked together to generate the cyclic [3]catenane product. Our method represents an advance both in the intricacy of the metal-templated self-assembly procedure and in the use of selective imine exchange to generate a topologically complex product.This work was supported by the UK Engineering and Physical Sciences Research Council (EPSRC) and a Marie Curie fellowship for J.J.H. (ITN-2010–264645). The authors thank the Diamond Light Source (UK) for synchrotron beamtime on I19 (MT7984 and MT8464).This is the author accepted manuscript. The final version is available from NPG via http://dx.doi.org/10.1038/nchem.220

    Mechanical Bonds and Topological Effects in Radical Dimer Stabilization

    Get PDF
    While mechanical bonding stabilizes tetrathiafulvalene (TTF) radical dimers, the question arises: what role does topology play in catenanes containing TTF units? Here, we report how topology, together with mechanical bonding, in isomeric [3]- and doubly interlocked [2]catenanes controls the formation of TTF radical dimers within their structural frameworks, including a ring-in-ring complex (formed between an organoplatinum square and a {2+2} macrocyclic polyether containing two 1,5-dioxynaphthalene (DNP) and two TTF units) that is topologically isomeric with the doubly interlocked [2]catenane. The separate TTF units in the two {1+1} macrocycles (each containing also one DNP unit) of the isomeric [3]catenane exhibit slightly different redox properties compared with those in the {2+2} macrocycle present in the [2]catenane, while comparison with its topological isomer reveals substantially different redox behavior. Although the stabilities of the mixed-valence (TTF2)^(•+) dimers are similar in the two catenanes, the radical cationic (TTF^(•+))_2 dimer in the [2]catenane occurs only fleetingly compared with its prominent existence in the [3]catenane, while both dimers are absent altogether in the ring-in-ring complex. The electrochemical behavior of these three radically configurable isomers demonstrates that a fundamental relationship exists between topology and redox properties

    Multivalent Tryptophan‐ and Tyrosine‐Containing [60]Fullerene Hexa‐Adducts as Dual HIV and Enterovirus A71 Entry Inhibitors

    Get PDF
    Unprecedented 3D hexa-adducts of [60]fullerene peripherally decorated with twelve tryptophan (Trp) or tyrosine (Tyr) residues have been synthesized. Studies on the antiviral activity of these novel compounds against HIV and EV71 reveal that they are much more potent against HIV and equally active against EV71 than the previously described dendrimer prototypes AL-385 and AL-463, which possess the same number of Trp/Tyr residues on the periphery but attached to a smaller and more flexible pentaerythritol core. These results demonstrate the relevance of the globular 3D presentation of the peripheral groups (Trp/Tyr) as well as the length of the spacer connecting them to the central core to interact with the viral envelopes, particularly in the case of HIV, and support the hypothesis that [60]fullerene can be an alternative and attractive biocompatible carbon-based scaffold for this type of highly symmetrical dendrimers. In addition, the functionalized fullerenes here described, which display twelve peripheral negatively charged indole moieties on their globular surface, define a new and versatile class of compounds with a promising potential in biomedical applications
    corecore