6,105 research outputs found
Quark spectral properties above Tc from Dyson-Schwinger equations
We report on an analysis of the quark spectral representation at finite
temperatures based on the quark propagator determined from its Dyson-Schwinger
equation in Landau gauge. In Euclidean space we achieve nice agreement with
recent results from quenched lattice QCD. We find different analytical
properties of the quark propagator below and above the deconfinement
transition. Using a variety of ansaetze for the spectral function we then
analyze the possible quasiparticle spectrum, in particular its quark mass and
momentum dependence in the high temperature phase. This analysis is completed
by an application of the Maximum Entropy Method, in principle allowing for any
positive semi-definite spectral function. Our results motivate a more direct
determination of the spectral function in the framework of Dyson-Schwinger
equations
High order Fuchsian equations for the square lattice Ising model:
This paper deals with , the six-particle contribution to
the magnetic susceptibility of the square lattice Ising model. We have
generated, modulo a prime, series coefficients for . The
length of the series is sufficient to produce the corresponding Fuchsian linear
differential equation (modulo a prime). We obtain the Fuchsian linear
differential equation that annihilates the "depleted" series
. The factorization of the corresponding differential
operator is performed using a method of factorization modulo a prime introduced
in a previous paper. The "depleted" differential operator is shown to have a
structure similar to the corresponding operator for . It
splits into factors of smaller orders, with the left-most factor of order six
being equivalent to the symmetric fifth power of the linear differential
operator corresponding to the elliptic integral . The right-most factor has
a direct sum structure, and using series calculated modulo several primes, all
the factors in the direct sum have been reconstructed in exact arithmetics.Comment: 23 page
Demographic history and genetic differentiation in apes
SummaryComparisons of genetic variation between humans and great apes are hampered by the fact that we still know little about the demographics and evolutionary history of the latter species [1–4]. In addition, characterizing ape genetic variation is important because they are threatened with extinction, and knowledge about genetic differentiation among groups may guide conservation efforts [5]. We sequenced multiple intergenic autosomal regions totaling 22,400 base pairs (bp) in ten individuals each from western, central, and eastern chimpanzee groups and in nine bonobos, and 16,000 bp in ten Bornean and six Sumatran orangutans. These regions are analyzed together with homologous information from three human populations and gorillas. We find that whereas orangutans have the highest diversity, western chimpanzees have the lowest, and that the demographic histories of most groups differ drastically. Special attention should therefore be paid to sampling strategies and the statistics chosen when comparing levels of variation within and among groups. Finally, we find that the extent of genetic differentiation among “subspecies” of chimpanzees and orangutans is comparable to that seen among human populations, calling the validity of the “subspecies” concept in apes into question
Finding Multiple New Optimal Locations in a Road Network
We study the problem of optimal location querying for location based services
in road networks, which aims to find locations for new servers or facilities.
The existing optimal solutions on this problem consider only the cases with one
new server. When two or more new servers are to be set up, the problem with
minmax cost criteria, MinMax, becomes NP-hard. In this work we identify some
useful properties about the potential locations for the new servers, from which
we derive a novel algorithm for MinMax, and show that it is efficient when the
number of new servers is small. When the number of new servers is large, we
propose an efficient 3-approximate algorithm. We verify with experiments on
real road networks that our solutions are effective and attains significantly
better result quality compared to the existing greedy algorithms
Experimental mathematics on the magnetic susceptibility of the square lattice Ising model
We calculate very long low- and high-temperature series for the
susceptibility of the square lattice Ising model as well as very long
series for the five-particle contribution and six-particle
contribution . These calculations have been made possible by the
use of highly optimized polynomial time modular algorithms and a total of more
than 150000 CPU hours on computer clusters. For 10000 terms of the
series are calculated {\it modulo} a single prime, and have been used to find
the linear ODE satisfied by {\it modulo} a prime.
A diff-Pad\'e analysis of 2000 terms series for and
confirms to a very high degree of confidence previous conjectures about the
location and strength of the singularities of the -particle components of
the susceptibility, up to a small set of ``additional'' singularities. We find
the presence of singularities at for the linear ODE of ,
and for the ODE of , which are {\it not} singularities
of the ``physical'' and that is to say the
series-solutions of the ODE's which are analytic at .
Furthermore, analysis of the long series for (and )
combined with the corresponding long series for the full susceptibility
yields previously conjectured singularities in some , .
We also present a mechanism of resummation of the logarithmic singularities
of the leading to the known power-law critical behaviour occurring
in the full , and perform a power spectrum analysis giving strong
arguments in favor of the existence of a natural boundary for the full
susceptibility .Comment: 54 pages, 2 figure
The diagonal Ising susceptibility
We use the recently derived form factor expansions of the diagonal two-point
correlation function of the square Ising model to study the susceptibility for
a magnetic field applied only to one diagonal of the lattice, for the isotropic
Ising model.
We exactly evaluate the one and two particle contributions
and of the corresponding susceptibility, and obtain linear
differential equations for the three and four particle contributions, as well
as the five particle contribution , but only modulo a given
prime. We use these exact linear differential equations to show that, not only
the russian-doll structure, but also the direct sum structure on the linear
differential operators for the -particle contributions are
quite directly inherited from the direct sum structure on the form factors .
We show that the particle contributions have their
singularities at roots of unity. These singularities become dense on the unit
circle as .Comment: 18 page
Form factor expansion of the row and diagonal correlation functions of the two dimensional Ising model
We derive and prove exponential and form factor expansions of the row
correlation function and the diagonal correlation function of the two
dimensional Ising model
High-precision estimate of g4 in the 2D Ising model
We compute the renormalized four-point coupling in the 2d Ising model using
transfer-matrix techniques. We greatly reduce the systematic uncertainties
which usually affect this type of calculations by using the exact knowledge of
several terms in the scaling function of the free energy. Our final result is
g4=14.69735(3).Comment: 17 pages, revised version with minor changes, accepted for
publication in Journal of Physics
- …