292 research outputs found

    Synthesis of a ditopic homooxacalix[3]arene for fluorescence enhanced detection of heavy and transition metal ions

    Get PDF
    A pyrene-appended ratiometric fluorescent chemosensor L based on a synthetic approach of insulating the fluorophore from the ionophore by a specific molecular spacer has been synthesised and characterised. The fluorescence spectra changes of L suggested that the chemosensor can detect heavy and transition metal (HTM) ions ratiometrically and with variable sensitivity according to the substituents present. ¹H NMR titration experiments indicated that the three triazole ligands prefer binding with Hg²⁺, Pb²⁺ and Zn²⁺, resulting in a conformational change that produces monomer emission of the pyrene accompanied by the excimer quenching. However, the addition of Fe³⁺, which may be accommodated by the cavity of L, makes the pyrene units move closer to each other, and a discernible increase in the emission intensity of the static excimer is observed. Therefore, it is believed that the ditopic scaffold of the calix[3]arene as a specific molecular spacer here plays an important role in the blocking of the heavy atom effect of HTM ions by insulating the fluorophore from the ionophore given the long distance between the metal cation and the pyrene moiety

    High-Sensitivity C-Reactive Protein: An Independent Risk Factor for Left Ventricular Hypertrophy in Patients with Lupus Nephritis

    Get PDF
    Objective. To determine the prevalence of left ventricular hypertrophy (LVH) and its associated risk factors in lupus nephritis (LN) patients. Methods. 287 LN patients (age: 38.54 ± 13.31, 262 female) were recruited. Echocardiography and serum high-sensitivity C-reactive protein (hs-CRP) were measured. Their relationship was evaluated by univariate correlation analysis and multivariate regression analysis. Results. The prevalence of LVH in this cohort was 21.25% (n = 61). Serum hs-CRP level was significantly elevated in patients with LVH compared to those without (8.03 (3.22–30.95) versus 3.93 (1.48–9.48) mg/L, P < .01), and correlated with left ventricular mass index (LVMI) (r = 0.314, P = .001). Multivariate regression analysis further confirmed that hs-CRP was an independent risk factor (β = 0.338, P = .002) for LVH in patients with LN. Conclusions. Our findings demonstrated that serum hs-CRP level is independently correlated with LVMI and suggested that measurement of hs-CRP may provide important clinical information to investigate LVH in LN patients

    Serum IL-18 Is Closely Associated with Renal Tubulointerstitial Injury and Predicts Renal Prognosis in IgA Nephropathy

    Get PDF
    Background. IgA nephropathy (IgAN) was thought to be benign but recently found it slowly progresses and leads to ESRD eventually. The aim of this research is to investigate the value of serum IL-18 level, a sensitive biomarker for proximal tubule injury, for assessing the histopathological severity and disease progression in IgAN. Methods. Serum IL-18 levels in 76 IgAN patients and 36 healthy blood donors were measured by ELISA. We evaluated percentage of global and segmental sclerosis (GSS) and extent of tubulointerstitial damage (TID). The correlations between serum IL-18 levels with clinical, histopathological features and renal prognosis were evaluated. Results. The patients were 38.85 ± 10.95 years old, presented with 2.61 (1.43∼4.08) g/day proteinuria. Serum IL-18 levels were significantly elevated in IgAN patients. Baseline serum IL-18 levels were significantly correlated with urinary protein excretion (r = 0.494, P = 0.002), Scr (r = 0.61, P < 0.001), and eGFR (r = −0.598, P < 0.001). TID scores showed a borderline significance with serum IL-18 levels (r = 0.355, P = 0.05). During follow-up, 26 patients (34.21%) had a declined renal function. Kaplan-Meier analysis found those patients with elevated IL-18 had a significant poor renal outcome (P = 0.03), and Cox analysis further confirmed that serum IL-18 levels were an independent predictor of renal prognosis (β = 1.98, P = 0.003)

    Influence of synthetic superparamagnetic iron oxide on dendritic cells

    Get PDF
    Yongbin Mou1, Baoan Chen2, Yu Zhang3, Yayi Hou4, Hao Xie4, Guohua Xia2, Meng Tang5, Xiaofeng Huang1, Yanhong Ni1, Qingang Hu1,6 1Central Laboratory of Stomatology, Stomatological Hospital Affiliated Medical School, Nanjing University, 2Department of Hematology, Zhongda Hospital, Medical School, Southeast University, 3State Key Laboratory of Bioelectronics, Jiangsu Key Laboratory for Biomaterials and Devices, Southeast University, 4Immunology and Reproductive Biology Laboratory, Medical School, Nanjing University, 5Laboratory of Environmental Medicine and Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing, People&amp;#39;s Republic of China; 6Leeds Dental Institute, Faculty of Medicine and Health, University of Leeds, Leeds, UK Background: This study investigated the influence of synthetic superparamagnetic iron oxide (SPIO) on dendritic cells and provides a possible method for labeling these cells. Methods: SPIO nanoparticles were prepared, and their morphology and magnetic properties were characterized. The particles were endocytosed by dendritic cells generated from mouse bone marrow. Labeling efficiency and cellular uptake were analyzed by Prussian blue staining and quantitative spectrophotometric assay. Meanwhile, the surface molecules, cellular apoptosis, and functional properties of the SPIO-labeled dendritic cells were explored by flow cytometry and the mixed lymphocyte reaction assay. Results: The synthetic nanoparticles possessed a spherical shape and good superparamagnetic behavior. The mean concentration of iron in immature and mature dendritic cells was 31.8 &amp;plusmn; 0.7 &amp;micro;g and 35.6 &amp;plusmn; 1.0 &amp;micro;g per 1 &amp;times; 106 cells, respectively. After 12 hours of incubation with SPIO at a concentration of 25 &amp;micro;g/mL, nearly all cells were shown to contain iron. Interestingly, cellular apoptosis and surface expression of CD80, CD86, major histocompatibility II, and chemokine receptor 7 in mature dendritic cells were not affected to any significant extent by SPIO labeling. T cell activation was maintained at a low ratio of dendritic cells to T cells. Conclusion: SPIO nanoparticles have good superparamagnetic behavior, highly biocompatible characteristics, and are suitable for use in further study of the migratory behavior and biodistribution of dendritic cells in vivo. Keywords: superparamagnetic iron oxide, dendritic cell, cell labelin

    Electronic Origin of High Temperature Superconductivity in Single-Layer FeSe Superconductor

    Full text link
    The latest discovery of high temperature superconductivity signature in single-layer FeSe is significant because it is possible to break the superconducting critical temperature ceiling (maximum Tc~55 K) that has been stagnant since the discovery of Fe-based superconductivity in 2008. It also blows the superconductivity community by surprise because such a high Tc is unexpected in FeSe system with the bulk FeSe exhibiting a Tc at only 8 K at ambient pressure which can be enhanced to 38 K under high pressure. The Tc is still unusually high even considering the newly-discovered intercalated FeSe system A_xFe_{2-y}Se_2 (A=K, Cs, Rb and Tl) with a Tc at 32 K at ambient pressure and possible Tc near 48 K under high pressure. Particularly interesting is that such a high temperature superconductivity occurs in a single-layer FeSe system that is considered as a key building block of the Fe-based superconductors. Understanding the origin of high temperature superconductivity in such a strictly two-dimensional FeSe system is crucial to understanding the superconductivity mechanism in Fe-based superconductors in particular, and providing key insights on how to achieve high temperature superconductivity in general. Here we report distinct electronic structure associated with the single-layer FeSe superconductor. Its Fermi surface topology is different from other Fe-based superconductors; it consists only of electron pockets near the zone corner without indication of any Fermi surface around the zone center. Our observation of large and nearly isotropic superconducting gap in this strictly two-dimensional system rules out existence of node in the superconducting gap. These results have provided an unambiguous case that such a unique electronic structure is favorable for realizing high temperature superconductivity

    Sodium glucose co-transporter 2 (SGLT2) inhibition via dapagliflozin improves diabetic kidney disease (DKD) over time associatied with increasing effect on the gut microbiota in db/db mice

    Get PDF
    BackgroundThe intestinal microbiota disorder gradually aggravates during the progression of diabetes. Dapagliflozin (DAPA) can improve diabetes and diabetic kidney disease(DKD). However, whether the gut microbiota plays a role in the protection of DAPA for DKD remains unclear.MethodsTo investigate the effects of DAPA on DKD and gut microbiota composition during disease progression, in our study, we performed 16S rRNA gene sequencing on fecal samples from db/m mice (control group), db/db mice (DKD model group), and those treated with DAPA (treat group) at three timepoints of 14weeks\18weeks\22weeks.ResultsWe found that DAPA remarkably prevented weight loss and lowered fasting blood glucose in db/db mice during disease progression, eventually delaying the progression of DKD. Intriguingly, the study strongly suggested that there is gradually aggravated dysbacteriosis and increased bile acid during the development of DKD. More importantly, comparisons of relative abundance at the phylum level and partial least squares-discriminant analysis (PLS-DA) plots roughly reflected that the effect of DAPA on modulating the flora of db/db mice increased with time. Specifically, the relative abundance of the dominant Firmicutes and Bacteroidetes was not meaningfully changed among groups at 14 weeks as previous studies described. Interestingly, they were gradually altered in the treat group compared to the model group with a more protracted intervention of 18 weeks and 22 weeks. Furthermore, the decrease of Lactobacillus and the increase of norank_f:Muribaculaceae could account for the differences at the phylum level observed between the treat group and the model group at 18 weeks and 22 weeks.ConclusionWe firstly found that the protective effect of DAPA on DKD may be related to the dynamic improvement of the gut microbiota over time, possibly associated with the impact of DAPA on the bile acid pool and its antioxidation effect

    BLADE-ON-PETIOLE proteins act in an E3 ubiquitin ligase complex to regulate PHYTOCHROME INTERACTING FACTOR 4 abundance.

    Get PDF
    Both light and temperature have dramatic effects on plant development. Phytochrome photoreceptors regulate plant responses to the environment in large part by controlling the abundance of PHYTOCHROME INTERACTING FACTOR (PIF) transcription factors. However, the molecular determinants of this essential signaling mechanism still remain largely unknown. Here, we present evidence that the &lt;i&gt;BLADE-ON-PETIOLE&lt;/i&gt; ( &lt;i&gt;BOP&lt;/i&gt; ) genes, which have previously been shown to control leaf and flower development in Arabidopsis, are involved in controlling the abundance of PIF4. Genetic analysis shows that &lt;i&gt;BOP2&lt;/i&gt; promotes photo-morphogenesis and modulates thermomorphogenesis by suppressing &lt;i&gt;PIF4&lt;/i&gt; activity, through a reduction in PIF4 protein level. In red-light-grown seedlings PIF4 ubiquitination was reduced in the &lt;i&gt;bop2&lt;/i&gt; mutant. Moreover, we found that BOP proteins physically interact with both PIF4 and CULLIN3A and that a CULLIN3-BOP2 complex ubiquitinates PIF4 in vitro. This shows that BOP proteins act as substrate adaptors in a CUL3 &lt;sup&gt;BOP1/BOP2&lt;/sup&gt; E3 ubiquitin ligase complex, targeting PIF4 proteins for ubiquitination and subsequent degradation
    corecore