6,354 research outputs found

    Precision Spectroscopy of Polarized Molecules in an Ion Trap

    Get PDF
    Polar molecules are desirable systems for quantum simulations and cold chemistry. Molecular ions are easily trapped, but a bias electric field applied to polarize them tends to accelerate them out of the trap. We present a general solution to this issue by rotating the bias field slowly enough for the molecular polarization axis to follow but rapidly enough for the ions to stay trapped. We demonstrate Ramsey spectroscopy between Stark-Zeeman sublevels in 180Hf19F+ with a coherence time of 100 ms. Frequency shifts arising from well-controlled topological (Berry) phases are used to determine magnetic g-factors. The rotating-bias-field technique may enable using trapped polar molecules for precision measurement and quantum information science, including the search for an electron electric dipole moment.Comment: Accepted to Scienc

    Comparison of the Electronic Structures of Two Non-cuprate Layered Transition Metal Oxide Superconductors

    Full text link
    Comparison is made of the electronic structure of the little-studied layered transition metal oxide LiNbO2_2 with that of Nax_xCoO2_2, which has attracted tremendous interest since superconductivity was discovered in its hydrate. Although the active transition metal dd states are quite different due to different crystal fields and band filling, both systems show a strong change of electronic structure with changes in the distance between the transition metal ion layer and the oxygen layers. The niobate is unusual in having a large second-neighbor hopping amplitude, and a nearest neighbor hopping amplitude that is sensitive to the Nb-O separation. Lix_xNbO2_2 also presents the attractive simplicity of a single band triangular lattice system with variable carrier concentration that is superconducting.Comment: 5 pages, 3 embedded figures (Proceedings in third Hiroshima international workshop

    Potential energy surface of the 2A' Li2+Li doublet ground state

    Full text link
    The lowest doublet electronic state for the lithium trimer (2A') is calculated for use in three-body scattering calculations using the valence electron FCI method with atomic cores represented using an effective core potential. It is shown that an accurate description of core-valence correlation is necessary for accurate calculations of molecular bond lengths, frequencies and dissociation energies. Interpolation between 2A' ab initio surface data points in a sparse grid is done using the global interpolant moving least squares method with a smooth radial data cutoff function included in the fitting weights and bivariate polynomials as a basis set. The Jahn-Teller splitting of the 2E' surface into the 2A1 and 2B2 states is investigated using a combination of both CASSCF and FCI levels of theory. Additionally, preliminary calculations of the 2A'' surface are also presented using second order spin restricted open-shell Moller-Plesset perturbation theory.Comment: 7 pages, 5 figure

    Characterization of a novel angular dioxygenase from fluorene-degrading Sphingomonas sp. strain LB126

    Get PDF
    In this study, the genes involved in the initial attack on fluorene by Sphingomonas sp. LB126 were investigated. The ? and ? subunits of a dioxygenase complex (FlnA1A2), showing 63% and 51% sequence identity respectively, with the subunits of an angular dioxygenase from Gram-positive Terrabacter sp. DBF63, were identified. When overexpressed in E. coli, FlnA1A2 was responsible for the angular oxidation of fluorene, fluorenol, fluorenone, dibenzofuran and dibenzo-p-dioxin. Moreover, FlnA1A2 was able to oxidize polycyclic aromatic hydrocarbons and heteroaromatics, some of which were not oxidized by the dioxygenase from Terrabacter sp. DBF63. Quantification of resulting oxidation products showed that fluorene and phenanthrene were preferred substrates

    Magnetotransport properties of AlxGa1-xN/AlN/GaN heterostructures grown on epitaxial lateral overgrown GaN templates

    Get PDF
    We studied the low-temperature magnetotransport properties of AlxGa1−xN∕AlN∕GaN heterostructures with a two-dimensional electron gas(2DEG). Structures with different Al compositions were grown by metal-organic vapor-phase epitaxy on three types of templates: conventional undoped GaN, in situ epitaxial lateral overgrown GaN using a SiNx nanomask layer, and ex situe pitaxial lateral overgrown GaN (ELO-GaN) using a stripe-patterned SiO2 mask. All of the samples display Shubnikov–de Haas (SdH) oscillations that confirm the existence of 2DEGs. Field-dependent magnetoresistance and Hall measurements further indicate that the overgrown heterostructures have a parallel conducting layer in addition to the 2DEG. To characterize the parallel channel, we repeated the measurements after the 2DEG was etched away. 2DEGcarrier density values were then extracted from the SdH data, whereas the zero-field 2DEG conductivity was determined by subtracting the parallel channel conductivity from the total. The quantitative mobility spectrum analysis could not be applied in some cases, due to a large contact resistance between the parallel channels. The resulting 2DEG mobility is about a factor of 2 higher in the ELO-GaN and SiN–GaN samples as compared to the standard control samples. The mobility enhancement is attributed to a reduction of threading dislocations by the two ELO techniques employed

    Controlling the quantum stereodynamics of ultracold bimolecular reactions

    Full text link
    Chemical reaction rates often depend strongly on stereodynamics, namely the orientation and movement of molecules in three-dimensional space. An ultracold molecular gas, with a temperature below 1 uK, provides a highly unusual regime for chemistry, where polar molecules can easily be oriented using an external electric field and where, moreover, the motion of two colliding molecules is strictly quantized. Recently, atom-exchange reactions were observed in a trapped ultracold gas of KRb molecules. In an external electric field, these exothermic and barrierless bimolecular reactions, KRb+KRb -> K2+Rb2, occur at a rate that rises steeply with increasing dipole moment. Here we show that the quantum stereodynamics of the ultracold collisions can be exploited to suppress the bimolecular chemical reaction rate by nearly two orders of magnitude. We use an optical lattice trap to confine the fermionic polar molecules in a quasi-two-dimensional, pancake-like geometry, with the dipoles oriented along the tight confinement direction. With the combination of sufficiently tight confinement and Fermi statistics of the molecules, two polar molecules can approach each other only in a "side-by-side" collision, where the chemical reaction rate is suppressed by the repulsive dipole-dipole interaction. We show that the suppression of the bimolecular reaction rate requires quantum-state control of both the internal and external degrees of freedom of the molecules. The suppression of chemical reactions for polar molecules in a quasi-two-dimensional trap opens the way for investigation of a dipolar molecular quantum gas. Because of the strong, long-range character of the dipole-dipole interactions, such a gas brings fundamentally new abilities to quantum-gas-based studies of strongly correlated many-body physics, where quantum phase transitions and new states of matter can emerge.Comment: 19 pages, 4 figure

    Aharonov-Bohm interferences from local deformations in graphene

    Full text link
    One of the most interesting aspects of graphene is the tied relation between structural and electronic properties. The observation of ripples in the graphene samples both free standing and on a substrate has given rise to a very active investigation around the membrane-like properties of graphene and the origin of the ripples remains as one of the most interesting open problems in the system. The interplay of structural and electronic properties is successfully described by the modelling of curvature and elastic deformations by fictitious gauge fields that have become an ex- perimental reality after the suggestion that Landau levels can form associated to strain in graphene and the subsequent experimental confirmation. Here we propose a device to detect microstresses in graphene based on a scanning-tunneling-microscopy setup able to measure Aharonov-Bohm inter- ferences at the nanometer scale. The interferences to be observed in the local density of states are created by the fictitious magnetic field associated to elastic deformations of the sample.Comment: Some bugs fixe

    Bias dependent two-channel conduction in InAlN/AlN/GaN structures

    Get PDF
    Due to growth temperature differences during deposition of GaN heterostructures utilizing InAlN barriers, an inadvertent parasitic GaN layer can form in the InAlN barrier layer. In structures utilizing AlN spacer layers, this parasitic layer acts as a second conduction channel with a carrier density dependent upon polarization charges and lattice strain as well as the surface potential. The effect of an additional GaN spacer layer in InAlN/AlN/GaN structures is assessed using simulations, electron-microscopy observations, magnetoconductivity measurements with gated Hall bar samples, and with quantitative mobility spectrum analysis. We propose a possible formation mechanism for the parasitic layer, and note that although the additional unintended layer may have beneficial aspects, we discuss a strategy to prevent its occurrence
    corecore