550 research outputs found

    Accelerating K-12 computational thinking using scaffolding, staging, and abstraction

    Full text link
    We describe a three-stage model of computing instruction beginning with a simple, highly scaffolded programming en-vironment (Kodu) and progressing to more challenging frame-works (Alice and Lego NXT-G). In moving between frame-works, students explore the similarities and differences in how concepts such as variables, conditionals, and looping are realized. This can potentially lead to a deeper under-standing of programming, bringing students closer to true computational thinking. Some novel strategies for teach-ing with Kodu are outlined. Finally, we briefly report on our methodology and select preliminary results from a pi-lot study using this curriculum with students ages 10–17, including several with disabilities

    Quantum Commuting Circuits and Complexity of Ising Partition Functions

    Get PDF
    Instantaneous quantum polynomial-time (IQP) computation is a class of quantum computation consisting only of commuting two-qubit gates and is not universal in the sense of standard quantum computation. Nevertheless, it has been shown that if there is a classical algorithm that can simulate IQP efficiently, the polynomial hierarchy (PH) collapses at the third level, which is highly implausible. However, the origin of the classical intractability is still less understood. Here we establish a relationship between IQP and computational complexity of the partition functions of Ising models. We apply the established relationship in two opposite directions. One direction is to find subclasses of IQP that are classically efficiently simulatable in the strong sense, by using exact solvability of certain types of Ising models. Another direction is applying quantum computational complexity of IQP to investigate (im)possibility of efficient classical approximations of Ising models with imaginary coupling constants. Specifically, we show that there is no fully polynomial randomized approximation scheme (FPRAS) for Ising models with almost all imaginary coupling constants even on a planar graph of a bounded degree, unless the PH collapses at the third level. Furthermore, we also show a multiplicative approximation of such a class of Ising partition functions is at least as hard as a multiplicative approximation for the output distribution of an arbitrary quantum circuit.Comment: 36 pages, 5 figure

    A Family of Lightweight Twisted Edwards Curves for the Internet of Things

    Get PDF
    We introduce a set of four twisted Edwards curves that satisfy common security requirements and allow for fast implementations of scalar multiplication on 8, 16, and 32-bit processors. Our curves are defined by an equation of the form -x^2 + y^2 = 1 + dx^2y^2 over a prime field Fp, where d is a small non-square modulo p. The underlying prime fields are based on "pseudo-Mersenne" primes given by p = 2^k - c and have in common that p is congruent to 5 modulo 8, k is a multiple of 32 minus 1, and c is at most eight bits long. Due to these common features, our primes facilitate a parameterized implementation of the low-level arithmetic so that one and the same arithmetic function is able to process operands of different length. Each of the twisted Edwards curves we introduce in this paper is birationally equivalent to a Montgomery curve of the form -(A+2)y^2 = x^3 + Ax^2 + x where 4/(A+2) is small. Even though this contrasts with the usual practice of choosing A such that (A+2)/4 is small, we show that the Montgomery form of our curves allows for an equally efficient implementation of point doubling as Curve25519. The four curves we put forward roughly match the common security levels of 80, 96, 112 and 128 bits. In addition, their Weierstraß representations are isomorphic to curves of the form y^2 = x^3 - 3x + b so as to facilitate inter-operability with TinyECC and other legacy software

    Design and Performance of the XENON10 Dark Matter Experiment

    Full text link
    XENON10 is the first two-phase xenon time projection chamber (TPC) developed within the XENON dark matter search program. The TPC, with an active liquid xenon (LXe) mass of about 14 kg, was installed at the Gran Sasso underground laboratory (LNGS) in Italy, and operated for more than one year, with excellent stability and performance. Results from a dark matter search with XENON10 have been published elsewhere. In this paper, we summarize the design and performance of the detector and its subsystems, based on calibration data using sources of gamma-rays and neutrons as well as background and Monte Carlo simulations data. The results on the detector's energy threshold, energy and position resolution, and overall efficiency show a performance that exceeds design specifications, in view of the very low energy threshold achieved (<10 keVr) and the excellent energy resolution achieved by combining the ionization and scintillation signals, detected simultaneously

    (E)-1-(Thio­phen-2-yl)-3-(2,4,6-tri­meth­oxy­phen­yl)prop-2-en-1-one

    Get PDF
    There are two crystallograpically independent mol­ecules in the asymmetric unit of the title heteroaryl chalcone derivative, C16H16O4S, with slightly different conformations. The thienyl ring of one mol­ecule is disordered over two positions, with a refined site-occupancy ratio of 0.713 (5):0.287 (5). The mol­ecules are twisted: the dihedral angle between the thienyl and benzene rings is 9.72 (19)° in the ordered mol­ecule, and 3.8 (4) and 2.1 (8)° for the major and minor components, respectively, in the disordered mol­ecule. In both mol­ecules, all three substituted meth­oxy groups are coplanar with the benzene ring to which they are attached. In each mol­ecule, a weak intra­molecular C—H⋯O inter­action generates an S(6) ring motif. In the crystal structure, adjacent mol­ecules are linked into a three-dimensional network by weak C—H⋯O inter­actions

    3D Position Sensitive XeTPC for Dark Matter Search

    Get PDF
    The technique to realize 3D position sensitivity in a two-phase xenon time projection chamber (XeTPC) for dark matter search is described. Results from a prototype detector (XENON3) are presented.Comment: Presented at the 7th UCLA Symposium on "Sources and Detection of Dark Matter and Dark Energy in the Universe

    LBECA: A Low Background Electron Counting Apparatus for Sub-GeV Dark Matter Detection

    Full text link
    Two-phase noble liquid detectors, with large target masses and effective background reduction, are currently leading the dark matter direct detection for WIMP masses above a few GeV. Due to their sensitivity to single ionized electron signals, these detectors were shown to also have strong constraints for sub-GeV dark matter via their scattering on electrons. In fact, the most stringent direct detection constraints for sub-GeV dark matter down to as low as ~5 MeV come from noble liquid detectors, namely XENON10, DarkSide-50, XENON100 and XENON1T, although these experiments still suffer from high background at single or a few electron level. LBECA is a planned 100-kg scale liquid xenon detector with significant reduction of the single and a few electron background. The experiment will improve the sensitivity to sub-GeV dark matter by three orders of magnitude compared to the current best constraints.Comment: to appear in the Proceedings of the TAUP 2019 Conferenc

    Notes on bordered Floer homology

    Full text link
    This is a survey of bordered Heegaard Floer homology, an extension of the Heegaard Floer invariant HF-hat to 3-manifolds with boundary. Emphasis is placed on how bordered Heegaard Floer homology can be used for computations.Comment: 73 pages, 29 figures. Based on lectures at the Contact and Symplectic Topology Summer School in Budapest, July 2012. v2: Fixed many small typo

    Constraints on inelastic dark matter from XENON10

    Full text link
    It has been suggested that dark matter particles which scatter inelastically from detector target nuclei could explain the apparent incompatibility of the DAMA modulation signal (interpreted as evidence for particle dark matter) with the null results from CDMS-II and XENON10. Among the predictions of inelastically interacting dark matter are a suppression of low-energy events, and a population of nuclear recoil events at higher nuclear recoil equivalent energies. This is in stark contrast to the well-known expectation of a falling exponential spectrum for the case of elastic interactions. We present a new analysis of XENON10 dark matter search data extending to Enr=75_{nr}=75 keV nuclear recoil equivalent energy. Our results exclude a significant region of previously allowed parameter space in the model of inelastically interacting dark matter. In particular, it is found that dark matter particle masses mχ150m_{\chi}\gtrsim150 GeV are disfavored.Comment: 8 pages, 4 figure
    corecore