115 research outputs found

    Association of metabolic equivalent of task (MET) score in length of stay in hospital following radical cystectomy with urinary diversion:a multi-institutional study

    Get PDF
    PURPOSE: The Metabolic equivalent of task (MET) score is used in patients’ preoperative functional capacity assessment. It is commonly thought that patients with a higher MET score will have better postoperative outcomes than patients with a lower MET score. However, such a link remains the subject of debate and is yet unvalidated in major urological surgery. This study aimed to explore the association of patients’ MET score with their postoperative outcomes following radical cystectomy. METHODS: We used records-linkage methodology with unique identifiers (Community Health Index/hospital number) and electronic databases to assess postoperative outcomes of patients who had underwent radical cystectomies between 2015 and 2020. The outcome measure was patients’ length of hospital stay. This was compared with multiple basic characteristics such as age, sex, MET score and comorbid conditions. A MET score of less than four (< 4) is taken as the threshold for a poor functional capacity. We conducted unadjusted and adjusted Cox regression analyses for time to discharge against MET score. RESULTS: A total of 126 patients were included in the analysis. Mean age on date of operation was 66.2 (SD 12.2) years and 49 (38.9%) were female. A lower MET score was associated with a statistically significant lower time-dependent risk of hospital discharge (i.e. longer hospital stay) when adjusted for covariates (HR 0.224; 95% CI 0.077–0.652; p = 0.006). Older age (adjusted HR 0.531; 95% CI 0.332–0.848; p = 0.008) and postoperative complications (adjusted HR 0.503; 95% CI 0.323–0.848; p = 0.002) were also found to be associated with longer hospital stay. Other comorbid conditions, BMI, disease staging and 30-day all-cause mortality were statistically insignificant. CONCLUSION: A lower MET score in this cohort of patients was associated with a longer hospital stay length following radical cystectomy with urinary diversion. SUPPLEMENTARY INFORMATION: The online version contains supplementary material available at 10.1007/s11255-021-02813-x

    Clinical aspects of short-chain acyl-CoA dehydrogenase deficiency

    Get PDF
    Short-chain acyl-CoA dehydrogenase deficiency (SCADD) is an autosomal recessive inborn error of mitochondrial fatty acid oxidation. SCADD is biochemically characterized by increased C4-carnitine in plasma and ethylmalonic acid in urine. The diagnosis of SCADD is confirmed by DNA analysis showing SCAD gene mutations and/or variants. SCAD gene variants are present in homozygous form in approximately 6% of the general population and considered to confer susceptibility to development of clinical disease. Clinically, SCADD generally appears to present early in life and to be most frequently associated with developmental delay, hypotonia, epilepsy, behavioral disorders, and hypoglycemia. However, these symptoms often ameliorate and even disappear spontaneously during follow-up and were found to be unrelated to the SCAD genotype. In addition, in some cases, symptoms initially attributed to SCADD could later be explained by other causes. Finally, SCADD relatives of SCADD patients as well as almost all SCADD individuals diagnosed by neonatal screening remained asymptomatic during follow-up. This potential lack of clinical consequences of SCADD has several implications. First, the diagnosis of SCADD should never preclude extension of the diagnostic workup for other potential causes of the observed symptoms. Second, patients and parents should be clearly informed about the potential lack of relevance of the disorder to avoid unfounded anxiety. Furthermore, to date, SCADD is not an optimal candidate for inclusion in newborn screening programs. More studies are needed to fully establish the relevance of SCADD and solve the question as to whether SCADD is involved in a multifactorial disease or represents a nondisease

    Algorithms to predict cerebral malaria in murine models using the SHIRPA protocol

    Get PDF
    <p>Abstract</p> <p>Background</p> <p><it>Plasmodium berghei </it>ANKA infection in C57Bl/6 mice induces cerebral malaria (CM), which reproduces, to a large extent, the pathological features of human CM. However, experimental CM incidence is variable (50-100%) and the period of incidence may present a range as wide as 6-12 days post-infection. The poor predictability of which and when infected mice will develop CM can make it difficult to determine the causal relationship of early pathological changes and outcome. With the purpose of contributing to solving these problems, algorithms for CM prediction were built.</p> <p>Methods</p> <p>Seventy-eight <it>P. berghei</it>-infected mice were daily evaluated using the primary SHIRPA protocol. Mice were classified as CM+ or CM- according to development of neurological signs on days 6-12 post-infection. Logistic regression was used to build predictive models for CM based on the results of SHIRPA tests and parasitaemia.</p> <p>Results</p> <p>The overall CM incidence was 54% occurring on days 6-10. Some algorithms had a very good performance in predicting CM, with the area under the receiver operator characteristic (<sub>au</sub>ROC) curve ≥ 80% and positive predictive values (PV+) ≥ 95, and correctly predicted time of death due to CM between 24 and 72 hours before development of the neurological syndrome (<sub>au</sub>ROC = 77-93%; PV+ = 100% using high cut off values). Inclusion of parasitaemia data slightly improved algorithm performance.</p> <p>Conclusion</p> <p>These algorithms work with data from a simple, inexpensive, reproducible and fast protocol. Most importantly, they can predict CM development very early, estimate time of death, and might be a valuable tool for research using CM murine models.</p

    A serine proteinase from the sarcoplasmic fraction of red sea bream Pagrus major is possibly derived from blood

    Get PDF
    Collagen degradation is known to be involved in the post mortem tenderization of fish muscle. A serine proteinase that is assumed to be related to collagen degradation after fish death was purified from the sarcoplasmic fraction of red sea bream Pagrus major by ammonium sulfate fractionation and column chromatography on Sephacryl S-300, Q Sepharose and Phenyl Sepharose CL-4B. The enzyme hydrolyzed gelatin and was obtained as a protein band of approximately 38 kDa upon sodium dodecyl sulfate polyacrylamide gel electrophoresis under reducing conditions. The N-terminal amino acid sequence of the enzyme was determined for 32 residues. A protein that had the same N-terminal amino acid sequence as the enzyme for ten residues was purified from the serum of red sea bream and showed the same characteristics as the enzyme. Therefore, it is suggested that the serine proteinase migrates from the blood to muscle and degrades muscle proteins after the death of the fish

    EGFR and HER2 expression in primary cervical cancers and corresponding lymph node metastases: Implications for targeted radiotherapy

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Proteins overexpressed on the surface of tumor cells can be selectively targeted. Epidermal growth factor receptor (EGFR) and human epidermal growth factor receptor 2 (HER2) are among the most often targeted proteins. The level and stability of expression in both primary tumors and corresponding metastases is crucial in the assessment of a receptor as target for imaging in nuclear medicine and for various forms of therapy. So far, the expression of EGFR and HER2 has only been determined in primary cervical cancers, and we have not found published data regarding the receptor status in corresponding metastatic lesions. The goal of this study was to evaluate whether any of these receptors are suitable as target for clinical diagnosis and therapy.</p> <p>Methods</p> <p>Expression of EGFR and HER2 was investigated immunohistochemically in both lymph node metastases and corresponding primary cervical cancers (n = 53). HER2 and EGFR expression was scored using HercepTest criteria (0, 1+, 2+ or 3+).</p> <p>Results</p> <p>EGFR overexpression (2+ or 3+) was found in 64% (35/53) of the primary cervical tumors and 60% (32/53) of the corresponding lymph node metastases. There was a good concordance between the primary tumors and the paired metastases regarding EGFR expression. Only four patients who had 2+ or 3+ in the primary tumors changed to 0 or 1+ in lymph node metastases, and another two cases changed the other way around. None of the primary tumors or the lymph node metastases expressed HER2 protein.</p> <p>Conclusion</p> <p>The EGFR expression seems to be common and stable during cervical cancer metastasis, which is encouraging for testing of EGFR targeted radiotherapy. HER2 appears to be of poor interest as a potential target in the treatment of cervical cancer.</p

    Cholesterol Pathways Affected by Small Molecules That Decrease Sterol Levels in Niemann-Pick Type C Mutant Cells

    Get PDF
    Niemann-Pick type C (NPC) disease is a genetically inherited multi-lipid storage disorder with impaired efflux of cholesterol from lysosomal storage organelles.The effect of screen-selected cholesterol lowering compounds on the major sterol pathways was studied in CT60 mutant CHO cells lacking NPC1 protein. Each of the selected chemicals decreases cholesterol in the lysosomal storage organelles of NPC1 mutant cells through one or more of the following mechanisms: increased cholesterol efflux from the cell, decreased uptake of low-density lipoproteins, and/or increased levels of cholesteryl esters. Several chemicals promote efflux of cholesterol to extracellular acceptors in both non-NPC and NPC1 mutant cells. The uptake of low-density lipoprotein-derived cholesterol is inhibited by some of the studied compounds.Results herein provide the information for prioritized further studies in identifying molecular targets of the chemicals. This approach proved successful in the identification of seven chemicals as novel inhibitors of lysosomal acid lipase (Rosenbaum et al, Biochim. Biophys. Acta. 2009, 1791:1155-1165)

    Three-year follow-up of physical activity in Norwegian youth from two ethnic groups: associations with socio-demographic factors

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>More research on factors associated with physical activity and the decline in participation during adolescence is needed. In this paper, we investigate the levels, change, and stability of physical activity during the late teens among ethnic Norwegians and ethnic minorities, and we examine the associations between physical activity and socio-demographic factors.</p> <p>Methods</p> <p>The baseline (T1) of this longitudinal study included 10<sup>th </sup>graders who participated in the youth part of the Oslo Health Study, which was carried out in schools in 2000–2001. The follow-up (T2) in 2003–2004 was conducted partly at school and partly by mail. A total of 2489 (1112 boys and 1377 girls) participated both at baseline and at follow-up. Physical activity level was measured by a question on weekly hours of physical activity outside of school. Socio-demographic variables were collected by questionnaire and from data obtained from Statistics Norway. Analysis of variance was used to study the level of and changes (T1 to T2) in physical activity, and the associations between physical activity and socio-demographic factors. Stability in physical activity was defined as the percentage of students reporting the same physical activity both times.</p> <p>Results</p> <p>Boys were more active than girls at age 15 and 18 years, independent of ethnic background. Among girls, ethnic Norwegians were more active than ethnic minorities. Hours per week spent on physical activity declined in all groups during the follow-up period. Few associations were found between physical activity and socio-demographic factors in both cross-sectional and longitudinal data. Among the ethnic minority girls, 65% reported being physically active 0–2 hours per week at baseline, and 82% of these girls reported the same level at follow up.</p> <p>Conclusion</p> <p>The association between physical activity and ethnicity at age 15 years remained the same during the follow-up. Few associations were found between physical activity and socio-demographic variables. A large proportion of ethnic minority girls reported a persistently low physical activity level, and this low participation rate may need special attention.</p

    Molecular characterization of EGFR, PDGFRA and VEGFR2 in cervical adenosquamous carcinoma

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Adenosquamous carcinoma of the uterine cervix is an infrequent but aggressive subtype of cervical cancer. A better understanding of its biological behaviour is warranted to define more accurate prognosis and therapeutic targets. Currently, the blockage of receptor tyrosine kinase (RTKs) activity is an efficient therapeutic strategy for many different cancers. The objective of this study was to investigate EGFR, PDGFRA and VEGFR2 RTKs overexpression and activating gene mutations in a cohort of 30 adenosquamous carcinomas of the uterine cervix.</p> <p>Methods</p> <p>EGFR, PDGFRA and VEGFR2 immunohistochemistry was performed in all samples, followed by DNA isolation from the gross macroscopically dissection of the neoplastic area. Screening for <it>EGFR </it>(exons 18–21) and <it>PDGFRA </it>(exons 12, 14 and 18) mutations was done by PCR – single-strand conformational polymorphism (PCR-SSCP).</p> <p>Results</p> <p>Despite the presence of EGFR immunohistochemical positive reactions in 43% (13/30) of the samples, no <it>EGFR </it>activating mutations in the hotspot region (exons 18–21) were identified. A silent base substitution (CAG>CAA) in <it>EGFR </it>exon 20 at codon 787 (Q787Q) was found in 17 cases (56%). All PDGFRA immunohistochemical reactions were positive and consistently observed in the stromal component, staining fibroblasts and endothelial cells, as well as in the cytoplasm of malignant cells. No activating <it>PDGFRA </it>mutations were found, yet, several silent mutations were observed, such as a base substitution in exon 12 (CCA>CCG) at codon 567 (P567P) in 9 cases and in exon 18 (GTC>GTT) at codon 824 (V824V) in 4 cases. We also observed the presence of base substitutions in intron 14 (IVS14+3G>A and IVS14+49G>A) in two different cases, and in intron 18 (IVS18-50insA) in 4 cases. VEGFR2 positivity was observed in 22 of 30 cases (73.3%), and was significantly associated with lack of metastasis (<it>p </it>= 0.038).</p> <p>Conclusion</p> <p>This is the most extensive analysis of EGFR, PDGFRA and VEGFR2 in cervical adenosquamous carcinomas. Despite the absence of <it>EGFR </it>and <it>PDGFRA </it>activating mutations, the presence of overexpression of these three important therapeutic targets in a subset of cases may be important in predicting the sensitivity of adenosquamous carcinoma to specific anti-RTKs drugs.</p

    Novel Primate Model of Serotonin Transporter Genetic Polymorphisms Associated with Gene Expression, Anxiety and Sensitivity to Antidepressants

    Get PDF
    This is the final version of the article. It first appeared from Nature Publishing Group via https://dx.doi.org/10.1038/npp.2016.41Genetic polymorphisms in the repeat upstream region of the serotonin transporter gene (SLC6A4) are associated with individual differences in stress reactivity, vulnerability to affective disorders and response to pharmacotherapy. However, the molecular, neurodevelopmental and psychopharmacological mechanisms underlying the link between SLC6A4 polymorphisms and the emotionally vulnerable phenotype are not fully understood. Thus, using the marmoset monkey Callithrix jacchus we characterize here a new neurobiological model to help to address these questions. We first sequenced the marmoset SLC6A4 promoter and identified a double nucleotide polymorphism (−2053AC/CT) and two single nucleotide polymorphisms (−2022C/T and −1592G/C) within the repeat upstream region. We showed their association with gene expression using in vivo quantitative PCR and with affective behavior using a primate test of anxiety (human intruder test). The low-expressing haplotype (AC/C/G) was linked with high anxiety whilst the high-expressing one (CT/T/C) was associated with an active coping strategy in response to threat. Pharmacological challenge with an acute dose of the selective serotonin reuptake inhibitor (SSRI), citalopram, revealed a genotype-dependent behavioral response. Whilst individuals homozygous for the high anxiety-related haplotype AC/C/G exhibited a dose-dependent, anxiogenic response, individuals homozygous for the low anxiety-related haplotype CT/T/C showed an opposing, dose-dependent anxiolytic effect. These findings provide a novel genetic and behavioral primate model to study the molecular, neurodevelopmental and psychopharmacological mechanisms that underlie genetic variation-associated complex behaviors, with specific implications for the understanding of normal and abnormal serotonin actions and the development of personalized pharmacological treatments for psychiatric disorders.Work was supported by an MRC Programme (ACR; G0901884) and performed within the Behavioural and Clinical Neuroscience Institute, University of Cambridge, funded jointly by the Wellcome Trust and MRC. AMS was supported by a McDonnell Foundation grant (PI’s: E. Phelps, T.W. Robbins; Co-Investigators: ACR and J. LeDoux; 22002015501) and currently supported by MRC; YS supported by the Long Term Student Support Program provided by Osaka University and the Ministry of Education, Culture, Sports, Science and Technology of Japan; HC supported by MRC Career Development Award and ACFS/MI supported by grants from the MRC and Wellcome Trust. GC supported by the Behavioural and Clinical Neuroscience Institute, Cambridge, United Kingdom. EHSS was self-funded
    corecore