898 research outputs found

    Student perceptions of the use of online video clips in a mathematics enabling course

    Get PDF
    STUDENT PERCEPTIONS OF THE USE OF ONLINE VIDEO CLIPS IN A MATHEMATICS ENABLING COURSE Jasmine Nga, Dale Wache b , Kung-Keat Teoh c Presenting Author: Jasmine Ng ([email protected]) aUniSA College, University of South Australia, Adelaide South Australia 5000, Australia b Teaching Innovation Unit, University of South Australia, Adelaide South Australia 5000, Australia c Student Learning Centre, Flinders University, Adelaide South Australia 5001, Australia KEYWORDS: Technology-enhanced learning; learning with videos; enabling education Background Enrolment in the Australian higher education sector is expanding, and participation is widening. Kennedy (1997) defines widening participation as 'increasing access to learning and providing opportunities for success and progression to a much wider cross-section of the population than now'. Consequently, non-traditional students, who would not have qualified to enter university studies previously, are now enrolling in enabling programs to meet university entry requirements. As reported by Norton and Cherastidhan (2014), a portion of the 25% of students who were admitted to bachelor degrees based on previous higher education study were non-traditional pathway students. The change of student demographics presents a diverse cohort of students to universities. These students of the enabling programs with very different mathematics skills, knowledge and background pose various pedagogical challenges. To meet the needs of these students, various methods were explored, including the use of online videos. Digital videos allow viewers to take control of the presentation, and they can select a video and view a particular segment of their choice with ease, thus study at their pace. Studies show that learning with videos increases problem-solving skills (Choi & Johnson, 2005) and are useful to improve learning (Kay & Kletskin, 2012). This study explores the effectiveness and perceived usefulness of short videos to teach mathematics for students of diverse mathematics abilities in an enabling program. Aims The primary aims of this study are to describe the development of short video-based mathematics lessons that were integrated into a technology-rich environment and to assess preliminary students’ perceptions of the video clips used for mathematics in an enabling university course. Description of intervention Video clips were developed in a math enabling course using a pedagogical design methodology by a project team consisting of an academic, an academic developer and an audio-visual technician. Recorded videos were developed using Camtasia. The videos were integrated into the mathematics course accessible in an online environment. Design and methods An exploratory case study to explore students’ initial feedback on the use of video to support learning the basics of algebra was carried out. It consists of a student survey with both open-ended qualitative and quantitative questions about students’ perceptions of the use of online video clips which was completed voluntarily. Results The analysed data indicates that enabling program students held strong positive attitudes toward a technology-enhanced learning environment. The use of online videos assisted their learning in mathematics. Most students like the overall concept of online videos and felt that they contributed to their improved understanding of mathematical concepts and working through mathematics problems. However, the data also suggests that students found the length of some of the video clips to be an obstacle to their learning. Conclusions The results of this exploratory study suggest that online video clips are a useful approach to connecting students to mathematics. The results also suggest that enabling program students find short video clips more effective. However, this exploratory case study is an early evaluation and the findings that provided the initial evidence should be confirmed with a larger sample group. References Choi, H. J., & Johnson, S. D. (2005). The effect of context-based video instruction on learning and motivation in online courses. The American Journal of Distance Education, 19(4), 215-227. Kay, R., & Kletskin, I. (2012). Evaluating the use of problem-based video podcasts to teach mathematics in higher education. Computers & Education, 59(2), 619-627. Kennedy, H. (1997) Learning works: Widening participation in further education. Coventry: Further Education Funding Council. Norton, A., & Cherastidtham, I. (2014). Mapping Australian higher education, 2014–15. Melbourne: Grattan Institute

    GNAO1 encephalopathy: broadening the phenotype and evaluating treatment and outcome

    Get PDF
    OBJECTIVE: To describe better the motor phenotype, molecular genetic features, and clinical course of GNAO1-related disease. METHODS: We reviewed clinical information, video recordings, and neuroimaging of a newly identified cohort of 7 patients with de novo missense and splice site GNAO1 mutations, detected by next-generation sequencing techniques. RESULTS: Patients first presented in early childhood (median age of presentation 10 months, range 0-48 months), with a wide range of clinical symptoms ranging from severe motor and cognitive impairment with marked choreoathetosis, self-injurious behavior, and epileptic encephalopathy to a milder phenotype, featuring moderate developmental delay associated with complex stereotypies, mainly facial dyskinesia and mild epilepsy. Hyperkinetic movements were often exacerbated by specific triggers, such as voluntary movement, intercurrent illnesses, emotion, and high ambient temperature, leading to hospital admissions. Most patients were resistant to drug intervention, although tetrabenazine was effective in partially controlling dyskinesia for 2/7 patients. Emergency deep brain stimulation (DBS) was life saving in 1 patient, resulting in immediate clinical benefit with complete cessation of violent hyperkinetic movements. Five patients had well-controlled epilepsy and 1 had drug-resistant seizures. Structural brain abnormalities, including mild cerebral atrophy and corpus callosum dysgenesis, were evident in 5 patients. One patient had a diffuse astrocytoma (WHO grade II), surgically removed at age 16. CONCLUSIONS: Our findings support the causative role of GNAO1 mutations in an expanded spectrum of early-onset epilepsy and movement disorders, frequently exacerbated by specific triggers and at times associated with self-injurious behavior. Tetrabenazine and DBS were the most useful treatments for dyskinesia

    High-resolution state-selected ion-molecule reaction studies using pulsed field ionization photoelectron-secondary ion coincidence method

    Get PDF
    We have developed an octopole-quadrupole photoionization apparatus at the Advanced Light Source for absolute integral cross-section measurements of rovibrational-state-selected ion-molecule reactions. This apparatus consists of a high-resolution photoionization ion source, a wired ion gate lens, a dual radio-frequency (rf) octopole ion guide reaction gas cell, and a quadrupole mass spectrometer for reactant and product ion detection. The unique feature of this apparatus is the implementation of the high-resolution pulsed field ionization-photoelectron (PFI-PE)-photoion coincidence (PFI-PEPICO) technique, which has allowed the rotational-state selection of diatomic ions for ion-molecule reaction studies. The novel application of the wired ion gate lens for the rejection of false coincidence background ions is described. This application, along with the differential-ion-gate scheme, has made possible the measurements of rovibrational-state-selected absolute integral reaction cross sections for ion-molecule collisions using the PFI-PE-secondary ion coincidence PFI-PESICO method. The successful measurement of absolute state-selected cross sections for H2 + (X,v+,N+)+Ar(Ne) with v+ up to 17 [the third to the last vibrational state of H2+(X)] demonstrates the high sensitivity of this differential-ion-gate PFI-PESICO method. In order to gain a detailed understanding and to obtain optimal performance of the wired ion gate lens for PFI-PESICO measurements, we have carried out ion trajectory calculations of reactant ions between the photoionization region and the rf-octopole ion guide. On the basis of these calculations, possible future improvements for the application of this differential-ion-gate PFI-PESICO scheme are discussed

    Representing spray zone with cross flow as a well-mixed compartment in a high shear granulator

    Get PDF
    The spray zone is an important region to control nucleation of granules in a high shear granulator. In this study, a spray zone with cross flow is quantified as a well-mixed compartment in a high shear granulator. Granulation kinetics is quantitatively derived at both particle-scale and spray zone-scale. Two spatial decay rates, DGSDR (droplet-granule spatial decay rate) ζDG and DPSDR (droplet-primary particle spatial decay rate) ζDP, which are functions of volume fraction and diameter of particulate species within the powder bed, are defined to simplify the deduction. It is concluded that in cross flow, explicit analytical results show that the droplet concentration is subject to exponential decay with depth which produces a numerically infinite depth of spray zone in a real penetration process. In a well-mixed spray zone, the depth of the spray zone is 4/(ζDG + ζDP) and π2/3(ζDG + ζDP) in cuboid and cylinder shape, respectively. The first-order droplet-based collision rates of, nucleation rate B0 and rewetting rate RW0 are uncorrelated with the flow pattern and shape of the spray zone. The second-order droplet-based collision rate, nucleated granule-granule collision rate RGG, is correlated with the mixing pattern. Finally, a real formulation case of a high shear granulation process is used to estimate the size of the spray zone. The results show that the spray zone is a thin layer at the powder bed surface. We present, for the first time, the spray zone as a well-mixed compartment. The granulation kinetics of a well-mixed spray zone could be integrated into a Population Balance Model (PBM), particularly to aid development of a distributed model for product quality prediction

    Use of multicriteria decision analysis for assessing the benefit and risk of over-the-counter analgesics

    Get PDF
    Objectives To test the ability of a multicriteria decision analysis (MCDA) model to incorporate disparate data sources of varying quality along with clinical judgement in a benefit–risk assessment of six well-known pain-relief drugs. Methods Six over-the-counter (OTC) analgesics were evaluated against three favourable effects and eight unfavourable effects by seven experts who specialise in the relief of pain, two in a 2-day facilitated workshop whose input data and judgements were later peer-reviewed by five additional experts. Key findings Ibuprofen salts and solubilised emerged with the best benefit–risk profile, followed by naproxen, ibuprofen acid, diclofenac, paracetamol and aspirin. Conclusions Multicriteria decision analysis enabled participants to evaluate the OTC analgesics against a range of favourable and unfavourable effects in a group setting that enabled all issues to be openly aired and debated. The model was easily communicated and understood by the peer reviewers, so the model should be comprehensible to physicians, pharmacists and other health professionals

    Magnetic resonance imaging pattern recognition in childhood bilateral basal ganglia disorders

    Get PDF
    Bilateral basal ganglia abnormalities on MRI are observed in a wide variety of childhood disorders. MRI pattern recognition can enable rationalization of investigations and also complement clinical and molecular findings, particularly confirming genomic findings and also enabling new gene discovery. A pattern recognition approach in children with bilateral basal ganglia abnormalities on brain MRI was undertaken in this international multicentre cohort study. Three hundred and five MRI scans belonging to 201 children with 34 different disorders were rated using a standard radiological scoring proforma. In addition, literature review on MRI patterns was undertaken in these 34 disorders and 59 additional disorders reported with bilateral basal ganglia MRI abnormalities. Cluster analysis on first MRI findings from the study cohort grouped them into four clusters: Cluster 1—T2-weighted hyperintensities in the putamen; Cluster 2—T2-weighted hyperintensities or increased MRI susceptibility in the globus pallidus; Cluster 3—T2-weighted hyperintensities in the globus pallidus, brainstem and cerebellum with diffusion restriction; Cluster 4—T1-weighted hyperintensities in the basal ganglia. The 34 diagnostic categories included in this study showed dominant clustering in one of the above four clusters. Inflammatory disorders grouped together in Cluster 1. Mitochondrial and other neurometabolic disorders were distributed across clusters 1, 2 and 3, according to lesions dominantly affecting the striatum (Cluster 1: glutaric aciduria type 1, propionic acidaemia, 3-methylglutaconic aciduria with deafness, encephalopathy and Leigh-like syndrome and thiamine responsive basal ganglia disease associated with SLC19A3), pallidum (Cluster 2: methylmalonic acidaemia, Kearns Sayre syndrome, pyruvate dehydrogenase complex deficiency and succinic semialdehyde dehydrogenase deficiency) or pallidum, brainstem and cerebellum (Cluster 3: vigabatrin toxicity, Krabbe disease). The Cluster 4 pattern was exemplified by distinct T1-weighted hyperintensities in the basal ganglia and other brain regions in genetically determined hypermanganesemia due to SLC39A14 and SLC30A10. Within the clusters, distinctive basal ganglia MRI patterns were noted in acquired disorders such as cerebral palsy due to hypoxic ischaemic encephalopathy in full-term babies, kernicterus and vigabatrin toxicity and in rare genetic disorders such as 3-methylglutaconic aciduria with deafness, encephalopathy and Leigh-like syndrome, thiamine responsive basal ganglia disease, pantothenate kinase-associated neurodegeneration, TUBB4A and hypermanganesemia. Integrated findings from the study cohort and literature review were used to propose a diagnostic algorithm to approach bilateral basal ganglia abnormalities on MRI. After integrating clinical summaries and MRI findings from the literature review, we developed a prototypic decision-making electronic tool to be tested using further cohorts and clinical practice

    Conversion of a non-selective adenosine receptor antagonist into A3-selective high affinity fluorescent probes using peptide-based linkers

    Get PDF
    Advances in fluorescence-based imaging technologies have helped propel the study of real-time biological readouts and analysis across many different areas. In particular the use of fluorescent ligands as chemical tools to study proteins such as G protein-coupled receptors (GPCRs) has received ongoing interest. Methods to improve the efficient chemical synthesis of fluorescent ligands remain of paramount importance to ensure this area of bioanalysis continues to advance. Here we report conversion of the non-selective GPCR adenosine receptor antagonist Xanthine Amine Congener into higher affinity and more receptor subtype-selective fluorescent antagonists. This was achieved through insertion and optimisation of a dipeptide linker between the adenosine receptor pharmacophore and the fluorophore. Fluorescent probe 27 containing BODIPY 630/650 (pKD = 9.12 ± 0.05 [hA3AR]), and BODIPY FL-containing 28 (pKD = 7.96 ± 0.09 [hA3AR]) demonstrated clear, displaceable membrane binding using fluorescent confocal microscopy. From in silico analysis of the docked ligand-receptor complexes of 27, we suggest regions of molecular interaction that could account for the observed selectivity of these peptide-linker based fluorescent conjugates. This general approach of converting a non-selective ligand to a selective biological tool could be applied to other ligands of interest

    Impacts of climate change on plant diseases – opinions and trends

    Get PDF
    There has been a remarkable scientific output on the topic of how climate change is likely to affect plant diseases in the coming decades. This review addresses the need for review of this burgeoning literature by summarizing opinions of previous reviews and trends in recent studies on the impacts of climate change on plant health. Sudden Oak Death is used as an introductory case study: Californian forests could become even more susceptible to this emerging plant disease, if spring precipitations will be accompanied by warmer temperatures, although climate shifts may also affect the current synchronicity between host cambium activity and pathogen colonization rate. A summary of observed and predicted climate changes, as well as of direct effects of climate change on pathosystems, is provided. Prediction and management of climate change effects on plant health are complicated by indirect effects and the interactions with global change drivers. Uncertainty in models of plant disease development under climate change calls for a diversity of management strategies, from more participatory approaches to interdisciplinary science. Involvement of stakeholders and scientists from outside plant pathology shows the importance of trade-offs, for example in the land-sharing vs. sparing debate. Further research is needed on climate change and plant health in mountain, boreal, Mediterranean and tropical regions, with multiple climate change factors and scenarios (including our responses to it, e.g. the assisted migration of plants), in relation to endophytes, viruses and mycorrhiza, using long-term and large-scale datasets and considering various plant disease control methods

    Fractionated 131I anti-CEA radioimmunotherapy: effects on xenograft tumour growth and haematological toxicity in mice

    Get PDF
    Dose fractionation has been proposed as a method to improve the therapeutic ratio of radioimmunotherapy (RIT). This study compared a single administration of 7.4 MBq 131I-anti-CEA antibody given on day 1 with the same total activity given as fractionated treatment: 3.7 MBq (days 1 and 3), 2.4 MBq (days 1, 3, and 5) or 1.8 MBq (days 1, 3, 5, and 8). Studies in nude mice, bearing the human colorectal xenograft LS174T, showed that increasing the fractionation significantly reduced the efficacy of therapy. Fractionation was associated with a decrease in systemic toxicity as assessed by weight, but did not lead to any significant decrease in acute haematological toxicity. Similarly, no significant decrease in marrow toxicity, as assessed by colony-forming unit assays for granulocytes and macrophages (CFUgm), was seen. However, there was a significant depression of CFUgm counts when all treated animals were compared with untreated controls, suggesting that treatment did suppress marrow function. In conclusion, in this tumour model system, fractionated RIT causes less systemic toxicity, but is also less effective at treating tumours
    corecore