137 research outputs found

    HER2 Oncogenic Function Escapes EGFR Tyrosine Kinase Inhibitors via Activation of Alternative HER Receptors in Breast Cancer Cells

    Get PDF
    BACKGROUND: The response rate to EGFR tyrosine kinase inhibitors (TKIs) may be poor and unpredictable in cancer patients with EGFR expression itself being an inadequate response indicator. There is limited understanding of the mechanisms underlying this resistance. Furthermore, although TKIs suppress the growth of HER2-overexpressing breast tumor cells, they do not fully inhibit HER2 oncogenic function at physiological doses. METHODOLOGY AND PRINCIPAL FINDINGS: Here we have provided a molecular mechanism of how HER2 oncogenic function escapes TKIs' inhibition via alternative HER receptor activation as a result of autocrine ligand release. Using both Förster Resonance Energy Transfer (FRET) which monitors in situ HER receptor phosphorylation as well as classical biochemical analysis, we have shown that the specific tyrosine kinase inhibitors (TKIs) of EGFR, AG1478 and Iressa (Gefitinib) decreased EGFR and HER3 phosphorylation through the inhibition of EGFR/HER3 dimerization. Consequent to this, we demonstrate that cleavage of HER4 and dimerization of HER4/HER2 occur together with reactivation of HER3 via HER2/HER3, leading to persistent HER2 phosphorylation in the now resistant, surviving cells. These drug treatment-induced processes were found to be mediated by the release of ligands including heregulin and betacellulin that activate HER3 and HER4 via HER2. Whereas an anti-betacellulin antibody in combination with Iressa increased the anti-proliferative effect in resistant cells, ligands such as heregulin and betacellulin rendered sensitive SKBR3 cells resistant to Iressa. CONCLUSIONS AND SIGNIFICANCE: These results demonstrate the role of drug-induced autocrine events leading to the activation of alternative HER receptors in maintaining HER2 phosphorylation and in mediating resistance to EGFR tyrosine kinase inhibitors (TKIs) in breast cancer cells, and hence specify treatment opportunities to overcome resistance in patients

    A Neutrophil Timer Coordinates Immune Defense and Vascular Protection

    Get PDF
    Neutrophils eliminate pathogens efficiently but can inflict severe damage to the host if they over-activate within blood vessels. It is unclear how immunity solves the dilemma of mounting an efficient anti-microbial defense while preserving vascular health. Here, we identify a neutrophil-intrinsic program that enabled both. The gene Bmal1 regulated expression of the chemokine CXCL2 to induce chemokine receptor CXCR2-dependent diurnal changes in the transcriptional and migratory properties of circulating neutrophils. These diurnal alterations, referred to as neutrophil aging, were antagonized by CXCR4 (C-X-C chemokine receptor type 4) and regulated the outer topology of neutrophils to favor homeostatic egress from blood vessels at night, resulting in boosted anti-microbial activity in tissues. Mice engineered for constitutive neutrophil aging became resistant to infection, but the persistence of intravascular aged neutrophils predisposed them to thrombo-inflammation and death. Thus, diurnal compartmentalization of neutrophils, driven by an internal timer, coordinates immune defense and vascular protection. Neutrophils display circadian oscillations in numbers and phenotype in the circulation. Adrover and colleagues now identify the molecular regulators of neutrophil aging and show that genetic disruption of this process has major consequences in immune cell trafficking, anti-microbial defense, and vascular health.This study was supported by Intramural grants from A∗STAR to L.G.N., BES-2013-065550 to J.M.A., BES-2010-032828 to M.C.-A, and JCI-2012-14147 to L.A.W (all from Ministerio de Economía, Industria y Competitividad; MEIC). Additional MEIC grants were SAF2014-61993-EXP to C.L.-R.; SAF2015-68632-R to M.A.M. and SAF-2013-42920R and SAF2016-79040Rto D.S. D.S. also received 635122-PROCROP H2020 from the European Commission and ERC CoG 725091 from the European Research Council (ERC). ERC AdG 692511 PROVASC from the ERC and SFB1123-A1 from the Deutsche Forschungsgemeinschaft were given to C.W.; MHA VD1.2/81Z1600212 from the German Center for Cardiovascular Research (DZHK) was given to C.W. and O.S.; SFB1123-A6 was given to O.S.; SFB914-B08 was given to O.S. and C.W.; and INST 211/604-2, ZA 428/12-1, and ZA 428/13-1 were given to A.Z. This study was also supported by PI12/00494 from Fondo de Investigaciones Sanitarias (FIS) to C.M.; PI13/01979, Cardiovascular Network grant RD 12/0042/0054, and CIBERCV to B.I.; SAF2015-65607-R, SAF2013-49662-EXP, and PCIN-2014-103 from MEIC; and co-funding by Fondo Europeo de Desarrollo Regional (FEDER) to A.H. The CNIC is supported by the MEIC and the Pro CNIC Foundation and is a Severo Ochoa Center of Excellence (MEIC award SEV-2015-0505)

    A Neutrophil Timer Coordinates Immune Defense and Vascular Protection

    Get PDF
    Neutrophils eliminate pathogens efficiently but can inflict severe damage to the host if they over-activate within blood vessels. It is unclear how immunity solves the dilemma of mounting an efficient anti-microbial defense while preserving vascular health. Here, we identify a neutrophil-intrinsic program that enabled both. The gene Bmal1 regulated expression of the chemokine CXCL2 to induce chemokine receptor CXCR2-dependent diurnal changes in the transcriptional and migratory properties of circulating neutrophils. These diurnal alterations, referred to as neutrophil aging, were antagonized by CXCR4 (C-X-C chemokine receptor type 4) and regulated the outer topology of neutrophils to favor homeostatic egress from blood vessels at night, resulting in boosted anti-microbial activity in tissues. Mice engineered for constitutive neutrophil aging became resistant to infection, but the persistence of intravascular aged neutrophils predisposed them to thrombo-inflammation and death. Thus, diurnal compartmentalization of neutrophils, driven by an internal timer, coordinates immune defense and vascular protection.We thank all members of the Hidalgo Lab for discussion and insightful comments; J.M. Ligos, R. Nieto, and M. Viton for help with sorting and cytometric analyses; I. Ortega and E. Santos for animal husbandry; D. Rico, M.J. Gomez, C. Torroja, and F. Sanchez-Cabo for insightful comments and help with transcriptomic analyses; V. Labrador, E. Arza, A.M. Santos, and the Microscopy Unit of the CNIC for help with microscopy; S. Aznar-Benitah, U. Albrecht, Q.-J. Meng, B. Staels, and H. Duez for the generous gift of mice; J.A. Enriquez and J. Avila for scientific insights; and J.M. Garcia and A. Diez de la Cortina for art. This study was supported by Intramural grants from A* STAR to L.G.N., BES-2013-065550 to J.M.A., BES-2010-032828 to M.C.-A, and JCI-2012-14147 to L.A.W (all from Ministerio de Economia, Industria y Competitividad; MEIC). Additional MEIC grants were SAF2014-61993-EXP to C.L.-R.; SAF2015-68632-R to M.A.M. and SAF-2013-42920R and SAF2016-79040Rto D.S. D.S. also received 635122-PROCROP H2020 from the European Commission and ERC CoG 725091 from the European Research Council (ERC). ERC AdG 692511 PROVASC from the ERC and SFB1123-A1 from the Deutsche Forschungsgemeinschaft were given to C.W.; MHA VD1.2/81Z1600212 from the German Center for Cardiovascular Research (DZHK) was given to C.W. and O.S.; SFB1123-A6 was given to O.S.; SFB914-B08 was given to O.S. and C.W.; and INST 211/604-2, ZA 428/12-1, and ZA 428/13-1 were given to A.Z. This study was also supported by PI12/00494 from Fondo de Investigaciones Sanitarias (FIS) to C.M.; PI13/01979, Cardiovascular Network grant RD 12/0042/0054, and CIBERCV to B.I.; SAF2015-65607-R, SAF2013-49662-EXP, and PCIN-2014-103 from MEIC; and co-funding by Fondo Europeo de Desarrollo Regional (FEDER) to A.H. The CNIC is supported by the MEIC and the Pro CNIC Foundation and is a Severo Ochoa Center of Excellence (MEIC award SEV-2015-0505).S

    Stochastic Drift in Mitochondrial DNA Point Mutations: A Novel Perspective Ex Silico

    Get PDF
    The mitochondrial free radical theory of aging (mFRTA) implicates Reactive Oxygen Species (ROS)-induced mutations of mitochondrial DNA (mtDNA) as a major cause of aging. However, fifty years after its inception, several of its premises are intensely debated. Much of this uncertainty is due to the large range of values in the reported experimental data, for example on oxidative damage and mutational burden in mtDNA. This is in part due to limitations with available measurement technologies. Here we show that sample preparations in some assays necessitating high dilution of DNA (single molecule level) may introduce significant statistical variability. Adding to this complexity is the intrinsically stochastic nature of cellular processes, which manifests in cells from the same tissue harboring varying mutation load. In conjunction, these random elements make the determination of the underlying mutation dynamics extremely challenging. Our in silico stochastic study reveals the effect of coupling the experimental variability and the intrinsic stochasticity of aging process in some of the reported experimental data. We also show that the stochastic nature of a de novo point mutation generated during embryonic development is a major contributor of different mutation burdens in the individuals of mouse population. Analysis of simulation results leads to several new insights on the relevance of mutation stochasticity in the context of dividing tissues and the plausibility of ROS ”vicious cycle” hypothesis

    A novel inhibitor of the PI3K/Akt pathway based on the structure of inositol 1,3,4,5,6-pentakisphosphate

    Get PDF
    Background: Owing to its role in cancer, the phosphoinositide 3-kinase (PI3K)/Akt pathway is an attractive target for therapeutic intervention. We previously reported that the inhibition of Akt by inositol 1,3,4,5,6- pentakisphosphate (InsP5) results in anti-tumour properties. To further develop this compound we modified its structure to obtain more potent inhibitors of the PI3K/Akt pathway.Methods: Cell proliferation/survival was determined by cell counting, sulphorhodamine or acridine orange/ethidium bromide assay; Akt activation was determined by western blot analysis. In vivo effect of compounds was tested on PC3 xenografts, whereas in vitro activity on kinases was determined by SelectScreen Kinase Profiling Service.Results: The derivative 2-O-benzyl-myo-inositol 1,3,4,5,6-pentakisphosphate (2-O-Bn-InsP5) is active towards cancer types resistant to InsP5 in vitro and in vivo. 2-O-Bn-InsP5 possesses higher pro-apoptotic activity than InsP 5 in sensitive cells and enhances the effect of anti-cancer compounds. 2-O-Bn-InsP5 specifically inhibits 3-phosphoinositide- dependent protein kinase 1 (PDK1) in vitro (IC 50 in the low nanomolar range) and the PDK1-dependent phosphorylation of Akt in cell lines and excised tumours. It is interesting to note that 2-O-Bn-InsP5 also inhibits the mammalian target of rapamycin (mTOR) in vitro.Conclusions: InsP5 and 2-O-Bn-InsP5 may represent lead compounds to develop novel inhibitors of the PI3K/Akt pathway (including potential dual PDK1/mTOR inhibitors) and novel potential anti-cancer drugs

    Joint effect of heat and air pollution on mortality in 620 cities of 36 countries

    Get PDF
    Background The epidemiological evidence on the interaction between heat and ambient air pollution on mortality is still inconsistent. Objectives To investigate the interaction between heat and ambient air pollution on daily mortality in a large dataset of 620 cities from 36 countries. Methods We used daily data on all-cause mortality, air temperature, particulate matter ≤ 10 μm (PM10), PM ≤ 2.5 μm (PM2.5), nitrogen dioxide (NO2), and ozone (O3) from 620 cities in 36 countries in the period 1995–2020. We restricted the analysis to the six consecutive warmest months in each city. City-specific data were analysed with over-dispersed Poisson regression models, followed by a multilevel random-effects meta-analysis. The joint association between air temperature and air pollutants was modelled with product terms between non-linear functions for air temperature and linear functions for air pollutants. Results We analyzed 22,630,598 deaths. An increase in mean temperature from the 75th to the 99th percentile of city-specific distributions was associated with an average 8.9 % (95 % confidence interval: 7.1 %, 10.7 %) mortality increment, ranging between 5.3 % (3.8 %, 6.9 %) and 12.8 % (8.7 %, 17.0 %), when daily PM10 was equal to 10 or 90 μg/m3, respectively. Corresponding estimates when daily O3 concentrations were 40 or 160 μg/m3 were 2.9 % (1.1 %, 4.7 %) and 12.5 % (6.9 %, 18.5 %), respectively. Similarly, a 10 μg/m3 increment in PM10 was associated with a 0.54 % (0.10 %, 0.98 %) and 1.21 % (0.69 %, 1.72 %) increase in mortality when daily air temperature was set to the 1st and 99th city-specific percentiles, respectively. Corresponding mortality estimate for O3 across these temperature percentiles were 0.00 % (-0.44 %, 0.44 %) and 0.53 % (0.38 %, 0.68 %). Similar effect modification results, although slightly weaker, were found for PM2.5 and NO2. Conclusions Suggestive evidence of effect modification between air temperature and air pollutants on mortality during the warm period was found in a global dataset of 620 cities.Massimo Stafoggia, Francesca K. de’ Donato, Masna Rai and Alexandra Schneider were partially supported by the European Union’s Horizon 2020 Project Exhaustion (Grant ID: 820655). Jan Kyselý and Aleš Urban were supported by the Czech Science Foundation project (22-24920S). Joana Madureira was supported by the Fundação para a Ciência e a Tecnologia (FCT) (grant SFRH/BPD/115112/2016). Masahiro Hashizume was supported by the Japan Science and Technology Agency (JST) as part of SICORP, Grant Number JPMJSC20E4. Noah Scovronick was supported by the NIEHS-funded HERCULES Center (P30ES019776). South African Data were provided by Statistics South Africa, which did not have any role in conducting the study. Antonio Gasparrini was supported by the Medical Research Council-UK (Grants ID: MR/V034162/1 and MR/R013349/1), the Natural Environment Research Council UK (Grant ID: NE/R009384/1), and the European Union’s Horizon 2020 Project Exhaustion (Grant ID: 820655)

    Incident type 2 diabetes attributable to suboptimal diet in 184 countries

    Get PDF
    The global burden of diet-attributable type 2 diabetes (T2D) is not well established. This risk assessment model estimated T2D incidence among adults attributable to direct and body weight-mediated effects of 11 dietary factors in 184 countries in 1990 and 2018. In 2018, suboptimal intake of these dietary factors was estimated to be attributable to 14.1 million (95% uncertainty interval (UI), 13.814.4 million) incident T2D cases, representing 70.3% (68.871.8%) of new cases globally. Largest T2D burdens were attributable to insufficient whole-grain intake (26.1% (25.027.1%)), excess refined rice and wheat intake (24.6% (22.327.2%)) and excess processed meat intake (20.3% (18.323.5%)). Across regions, highest proportional burdens were in central and eastern Europe and central Asia (85.6% (83.487.7%)) and Latin America and the Caribbean (81.8% (80.183.4%)); and lowest proportional burdens were in South Asia (55.4% (52.160.7%)). Proportions of diet-attributable T2D were generally larger in men than in women and were inversely correlated with age. Diet-attributable T2D was generally larger among urban versus rural residents and higher versus lower educated individuals, except in high-income countries, central and eastern Europe and central Asia, where burdens were larger in rural residents and in lower educated individuals. Compared with 1990, global diet-attributable T2D increased by 2.6 absolute percentage points (8.6 million more cases) in 2018, with variation in these trends by world region and dietary factor. These findings inform nutritional priorities and clinical and public health planning to improve dietary quality and reduce T2D globally. (c) 2023, The Author(s)
    corecore